Skip to main content

Hypoxia and Acute Brain Insult

  • Chapter
Intensive Care in Childhood

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 25))

  • 155 Accesses

Abstract

In practice, when an anoxia-associated brain insult has been extensive, patients do not recover consciousness despite adequate cardiopulmonary resuscitation. The persistence of acute neurological symptoms and signs reflect a significant period of impaired substrate delivery, which may or may not be associated with a depression in cerebral perfusion. In some of these patients diffuse cortical and basal ganglia changes may be seen on cranial CT or magnetic resonance imaging 24–72 hours after the cerebral insult. Interestingly the severity of such cerebral edema that occurs and its time course and association with cerebrovascular and cerebrometabolic dysfunction is influenced by the events around the time of the insult. For example, hypoxia-induced cardiac arrest, as may be seen in the child with a respiratory illness, is more commonly associated with the development of marked post-resuscitation cerebral edema when compared with the post-resuscitation features of patients suffering primary cardiac arrest. Specific basal ganglia changes which relate to later movement disorders in survivors may also be seen more commonly in patients suffering prolonged hypoxia without cardiac arrest, or cardiac arrest associated with low cerebral blood flow, protracted hypothermia and lactic acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siesjo BK (1984) Cerebral circulation and metabolism. J Neurosurg 60:883.

    Article  PubMed  CAS  Google Scholar 

  2. Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850.

    Article  PubMed  CAS  Google Scholar 

  3. Siesjo BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J Cereb Blood Flow Metab 9:127.

    Article  PubMed  CAS  Google Scholar 

  4. Banati RB, Rothe G, Valet g, Kreutzberg GW (1991) Respiratory burst activity in brain macrophages: a flow cytometric study on cultured rat microglia. Neuropathol Appl Neurobiol 17:223.

    Article  PubMed  CAS  Google Scholar 

  5. Thurston JH, McDougal DB Jr (1969) Effect of ischemia on metabolism of the brain of the newborn mouse. Am J Physiol 216:348.

    PubMed  CAS  Google Scholar 

  6. Duffy TE, Kohle SJ, Vannucci RC (1975) Carbohydrate and energy metabolism in perinatal rat brain: Relation to survival in anoxia. J Neurochem 24:271.

    Article  PubMed  CAS  Google Scholar 

  7. Hattori H, Wasterlain CG (1990) Excitatory amino acids in the developing brain: Ontogeny, plasticity, and excitotoxicity. Pediatr Neurol 6:219.

    Article  PubMed  CAS  Google Scholar 

  8. Holowach-Thurston J, Hauhart RE, Jones EM (1974) Anoxia in mice: reduced glucose in brain with normal or elevated glucose in plasma and increased survival after glucose treatment. Pediatr Res 8:238.

    PubMed  CAS  Google Scholar 

  9. Pulsinelli WA, Waldman S, Rawlinson D, Plum F (1982) Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 32:1239.

    PubMed  CAS  Google Scholar 

  10. Plum F (1983) What causes infarction in ischemic brain?: the Robert Wartenberg lecture. Neurology 33:222.

    PubMed  CAS  Google Scholar 

  11. Hattori H, Wasterlain CG (1990) Posthypoxic glucose supplement reduces hypoxic-ischemic brain damage in the neonatal rat. Ann Neurol 28:122.

    Article  PubMed  CAS  Google Scholar 

  12. Safar P, Bleyaert A, Nemoto EM, et al (1978) Resuscitation after global brain ischemia-anoxia. Crit Care Med 6:215.

    Article  PubMed  CAS  Google Scholar 

  13. Michenfelder JD (1974) The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology 41:231.

    Article  PubMed  CAS  Google Scholar 

  14. Nugent M, Artru AA, Michenfelder JD (1982) Cerebral metabolic, vascular and protective effects of midazolam maleate. Anesthesiology 56:172.

    Article  PubMed  CAS  Google Scholar 

  15. Newberg LA, Milde JH, Michenfelder JD (1983) The cerebral metabolic effects of isoflu-rane at and above concentrations that suppress cortical electrical activity. Anesthesiology 59:23

    Article  PubMed  CAS  Google Scholar 

  16. Newberg LA, Michenfelder JD (1983) Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology 59:29.

    Article  PubMed  CAS  Google Scholar 

  17. Meyer FB, Sundt TM, Yanagihara T, Anderson RE (1987) Focal cerebral ischemia: Pathophysiologic mechanisms and rationale for future avenues of treatment. Mayo Clin Proc 62:35.

    PubMed  CAS  Google Scholar 

  18. Steen PA, Newberg LA, Milde JH, Michenfelder JD (1983) Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemiaa in the dog. J Cereb Blood Flow Metab 3:38.

    Article  PubMed  CAS  Google Scholar 

  19. Steen PA, Gisvold SE, Milde JH, et al (1985) Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 64:406.

    Article  Google Scholar 

  20. Deshpande JK, Wieloch T (1986) Flunarizine, a calcium entry blocker, ameliorates ischemic brain damage in the rat. Anesthesiology 64:215.

    Article  PubMed  CAS  Google Scholar 

  21. Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850.

    Article  PubMed  CAS  Google Scholar 

  22. Block GA, Pulsinelli WA (1987) Excitatory amino acid receptor antagonists: Failure to prevent ischemic neuronal damage. J Cereb Blood Flow Metab 7(suppl 1):S149.

    Google Scholar 

  23. McDonald JW, Silverstein FS, Johnston MV (1987) MK-801 protects the neonatal brain from hypoxic-ischemic damage. Eur J Pharmacol 140:359.

    Article  PubMed  CAS  Google Scholar 

  24. Hattori H, Morin AM, Schwartz PH, Fujikawa DG, Wasterlain CG (1989) Posthypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat. Neurology 39:713.

    PubMed  CAS  Google Scholar 

  25. Olney JW, Ikonomidou C, Mosinger JL, Frierdich G (1989) MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain. J Neurosci 9:1701.

    PubMed  CAS  Google Scholar 

  26. Tasker RC (1992) Excitatory aminoacid neurotoxicity: a broader horizon for cerebral protection? Arch Dis Child 67:1327.

    Article  PubMed  CAS  Google Scholar 

  27. Artru AA, Michenfelder JD (1980) Cerebral protective, metabolic, and vascular effects of Phenytoin. Stroke 11:377.

    Article  PubMed  CAS  Google Scholar 

  28. Artru AA, Michenfelder JD (1981) Anoxic cerebral potassium accumulation reduced by Phenytoin: Mechanism of cerebral protection? Anesth Analg 60:41.

    PubMed  CAS  Google Scholar 

  29. Evans DE, Kobrine AI, Le Grys DC, Bradley ME (1984) Protective effect of lidocaine in acute cerebral ischemia induced by air embolism. J Neurosurg 60:257.

    Article  PubMed  CAS  Google Scholar 

  30. Astrup J, Skovsted P, Gjerris F, Sorensen HR (1981) Increase in extracellular potassium in the brain during circulatory arrest: Effects of hypothermia, lidocaine, and thiopental. Anesthesiology 55:256.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tasker, R.C. (1996). Hypoxia and Acute Brain Insult. In: Tibboel, D., van der Voort, E. (eds) Intensive Care in Childhood. Update in Intensive Care and Emergency Medicine, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80227-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80227-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80229-4

  • Online ISBN: 978-3-642-80227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics