The Role of Leukocytes in Global and Focal Brain Ischemia

  • C. L. Schleien
  • J. W. Kuluz
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 25)


The role of leukocytes in the pathogenesis of ischemia-reperfusion injury in the brain remains unclear. The weight of experimental data suggests that leukocytes are integrally involved in the development of ischemia-reperfusion injury at both the endothelial and neuronal level, and are not simply inflammatory respondents to the primary brain injury. In the text to follow we will review the evidence for leukocytes in cerebral vessels and brain tissue itself, and the pathophysiologic mechanisms of injury by leukocytes with its therapeutic implications.


Middle Cerebral Artery Occlusion Leukocyte Adhesion Transient Middle Cerebral Artery Occlusion Focal Brain Ischemia Mesenteric Venule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petito CK (1979) Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38:222–234.PubMedCrossRefGoogle Scholar
  2. 2.
    Petito CK, Schaefer J A, Plum F (1977) Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures. Brain Res 127:251–267.PubMedCrossRefGoogle Scholar
  3. 3.
    Pulsinelli WA, Brierley IB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498.PubMedCrossRefGoogle Scholar
  4. 4.
    Chiang J, Kowada M, Ames A III, Wright RL, Majno G (1968) Cerebral ischemia. III. Vascular changes. J Neurosurg 52:455–465.Google Scholar
  5. 5.
    Hallenbeck JM, Dutka AJ, Tanishima T, et al. (1986) Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early post-ischemic period. Stroke 17:246–253.PubMedCrossRefGoogle Scholar
  6. 6.
    Del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfiision in baboons. Stroke 22:1276–1283.PubMedCrossRefGoogle Scholar
  7. 7.
    Dietrich WD, Busto R, Ginsberg MD (1984) Cerebral endothelial microvilli: formation following global forebrain ischemia. J Neuropathol Exp Neurol 43:72–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Caceres MJ, Schleien CL, Kuluz JW, Gelman B, Dietrich WD (1995) Early endothelial damage and leukocyte accumulation in piglet brains following cardiac arrest. Acta Neuropathol 90:582–591.PubMedCrossRefGoogle Scholar
  9. 9.
    Siesjo BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185.PubMedCrossRefGoogle Scholar
  10. 10.
    Lipton SA, Choi YB, Pan ZH, et al. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.PubMedCrossRefGoogle Scholar
  11. 11.
    Ames A III, Wright RL, Kowada M, Thurston JM, Majno G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52:437–453.PubMedGoogle Scholar
  12. 12.
    Babior BM, Curnutte JT, McMurrich BJ (1976) The particulate superoxide-forming system from human neutrophils: properties of the system and further evidence supporting its participation in the respiratory burst. J Clin Invest 58:989–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Jarasch E-D, Bruder G, Heid HM (1986) Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand [Suppl] 548:39–46.Google Scholar
  14. 14.
    Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64:803–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Braughler JM, Hall ED (1989) Central nervous system trauma and stroke: I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med 6:289–301.PubMedCrossRefGoogle Scholar
  16. 16.
    Del Zoppo GJ (1994) Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev 6:47–96.PubMedGoogle Scholar
  17. 17.
    O’Flaherty JT, Surles JR, Redman J, Jacobsen D, Pianotadosi C, Wykle RL (1986) Binding and metabolism of platelet-activating factor by human neutrophils. J Clin Invest 78:381–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Dobbin J, Crockard HA, Ross-Russell R (1989) Transient blood-brain barrier permeability following profound temporary global ischemia: an experimental study using 14C-AIB. J Cereb Blood Flow Metab 9:71–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Kuroiwa T, Ting P, Martinez H, Klatzo I (1985) The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol (Berl) 68:122–129.CrossRefGoogle Scholar
  20. 20.
    Carre J-B, Morand O, Homayoun P, Roux F, Boure J-M, Baumann N (1989) Purified rat brain microvessels exhibit both acid and neutral sphingomyelinase activities. J Neuro-chem 52:1294–9.Google Scholar
  21. 21.
    Crowell RM, Olsson Y, Klatzo I, Ommaya A (1970) Temporary occlusion of the middle cerebral artery in monkey. Clinical and pathological observations. Stroke 1:439–48.Google Scholar
  22. 22.
    Geng J-G, Bevilaqua MP, Moore KL, et al. (1990) Rapid neutrophil adhesion to activated endothelium mediated by GMP140. Nature 343:757–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Larson E, Celi A, Gilbert GE (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305–12.CrossRefGoogle Scholar
  24. 24.
    Palabrica T, Lobb R, Furie BC, et al. (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359:848–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Wright SD, Detmers PA (1988) Adherence promoting receptors on phagocytes. J Cell Sci [Suppl] 9:99–120.Google Scholar
  26. 26.
    Bienvenu K, Russell J, Granger DN (1992) Leukotriene B4 mediates shear rate-dependent leukocyte adhesion in mesenteric venules. Circ Res 71:906–11.PubMedGoogle Scholar
  27. 27.
    Zimmerman BJ, Anderson DC, Granger DN (1992) Neuropeptides promote neutrophil adherence to endothelial cell. Am J Physiol 263:G678–82.PubMedGoogle Scholar
  28. 28.
    Chen H, Chopp M. Bodzin G (1992) Neutropenia reduces the volume of cerebral infarct after transient middle cerebral artery occlusion in the rat. Neurosci Res Comm 11:93–99.Google Scholar
  29. 29.
    Vasthare VS, Heinel LA, Rosenwasser RH, Tuma RF (1990) Leukocyte involvement in cerebral ischemia and reperfusion injury. Surg Neurol 33:261–265.PubMedCrossRefGoogle Scholar
  30. 30.
    Dutka AJ, Kochanek PM, Hallenbeck JM (1989) Influence of granulocytopenia on canine cerebral ischemia induced by air embolism. Stroke 20:390–395.PubMedCrossRefGoogle Scholar
  31. 31.
    Clark WM, Madden KP, Rothlein R, Zivin J A (1991) Reduction of central nervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment. Stroke 22:877–883.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen H, Chopp M, Zhang RL, et al. (1994) Anti-CDllb monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol 35:447–452.CrossRefGoogle Scholar
  33. 33.
    Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR (1994) Postischemic administration of an Anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25:869–876.PubMedCrossRefGoogle Scholar
  34. 34.
    Asako H, Kukes P, Wallace JL, Wolf RE, Granger DN (1992) Modulation of leukocyte adhesion in rat mesenteric venules by aspirin and salicylate. Gastroenterology 103:146–152.PubMedGoogle Scholar
  35. 35.
    Asako H, Kubes P, Wallace JL, Gaginella T, Wolfe RE, Granger DN (1992) Idomethacin-induced leukocyte adhesion in mesenteric venules: role of lipoxygenase products. Am J Physiol 262: G903–908.PubMedGoogle Scholar
  36. 36.
    Kubes P, Kanwar S, Niu X-F, Gaboury J (1993) Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J 7:1293–1299.PubMedGoogle Scholar
  37. 37.
    Kurose I, Kubes P, Wolfe RE (1993) Inhibition of nitric oxide production: mechanisms of vascular albumin leakage. Circ Res 73:164–171.PubMedGoogle Scholar
  38. 38.
    Del Maestro RF, Planker M, Arfors KE (1982) Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium in vivo. Int J Microcirc Clin Exp 1:105–120.PubMedGoogle Scholar
  39. 39.
    Schleien CL, Eberle B, Shaffner H, Koehler RC, Traystman RJ (1994) Reduced blood-brain barrier permeability after cardiac arrest by conjugated superoxide dismutase and catalase in piglets. Stroke 25:1830–1835.PubMedCrossRefGoogle Scholar
  40. 40.
    Cronstein BN, Levin RI, Belanoff J, Weissman G, Hirschhorn R (1986) Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78:760–770.PubMedCrossRefGoogle Scholar
  41. 41.
    Grisham MB, Hernandez LA, Granger DN (1989) Adenosine inhibits ischemia/reperfu-sion-induced leukocyte adherence and extravasation. Am J Physiol 257:H1334–1339.PubMedGoogle Scholar
  42. 42.
    Cronstein BN, Eberle MA, Gruber HE, Levin RI (1991) Methotrexate inhibits neutrophil function by simulating adenosine release from connective tissue cells. Proc Natl Acad Sci. USA 88:2441–2445.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • C. L. Schleien
  • J. W. Kuluz

There are no affiliations available

Personalised recommendations