Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 26))

Abstract

In pursuit of an ideal clinical monitor of tissue perfusion, attention has focused on the gastrointestinal (GI) tract. Its inner-most mucosal layer has a countercurrent system of arterioles and venules that improves absorptive function but makes it susceptible to reduced oxygen delivery (DO2) states. Splanchnic vasoconstriction is an early response to a reduction in global DO2 as blood is diverted to organs such as heart and brain. Whether due to myocardial failure and/or hypovolemia, the reduction in splanchnic blood volume is disproportionately greater than that seen in other beds [1]. There is also considerable evidence to suggest that splanchnic hypoperfusion may be a significant factor in the pathogenesis of the multiple organ dysfunction syndrome (MODS) [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lundgren O (1989) Physiology of the intestinal circulation. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) Splanchnic ischemia and multiple organ failure. Edward Arnold, London, pp 29–40

    Google Scholar 

  2. Mythen MG, Webb AR (1994) The role of gut mucosal hypoperfusion in the pathogenesis of post-operative organ dysfunction. Intensive Care Med 20: 203–209

    Article  PubMed  CAS  Google Scholar 

  3. Fink MP (1991) Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med 19: 627–641

    Article  PubMed  CAS  Google Scholar 

  4. Uusaro A, Ruokonen E, Takala J (1995) Estimation of splanchnic blood flow by the Fick principle in man and problems in the use of indocyanine green. Cardiovasc Res 30:106–112

    PubMed  CAS  Google Scholar 

  5. Nilson GE, Tenland T, Oberg PA (1980) Evaluation of laser Doppler flowmeter for measurement of tissue blood flow. IEE Trans Biomed Eng 27: 597–604

    Article  Google Scholar 

  6. Ahn H, Ivarsson LE, Johansson K, et al (1988) Assessment of gastric blood flow with laser Doppler flowmetry. Scand J Gastroenterol 23: 1203–1210

    Article  PubMed  CAS  Google Scholar 

  7. Leung FW, Morishita T, Livingston EH (1987) Reflectance spectrophotometry for the assessment of gastroduodenal mucosal perfusion. Am J Physiol 252: G797–797G804

    Google Scholar 

  8. Larsen PN, Moesgaard F, Naver L, et al (1991) Gastric and colonic oxygen tension measured with a vacuum-fixed oxygen electrode. Scand J Gastroenterol 26: 409–418

    Article  PubMed  CAS  Google Scholar 

  9. Glenny RW, Bernard S, Brinkley M (1993) Validation of fluorescent labelled microspheres for measurement of regional organ perfusion. J Appl Physiol 74: 2585–2597

    PubMed  CAS  Google Scholar 

  10. Murakami M, Moriga M, Miyake T, et al (1982) Contact electrode method in hydrogen gas clearance technique: A new method for determination of regional gastric mucosal blood flow in animals and humans. Gastroenterology 82: 457–467

    PubMed  CAS  Google Scholar 

  11. Landow L, Phillips DA, Heard SO, Prevost D, Vandersalm TJ, Fink MP (1991) Gastric tonometry and venous oximetry in cardiac surgery patients. Crit Care Med 19: 1226–1233

    Article  PubMed  CAS  Google Scholar 

  12. Rasmussen I, Haglund U (1992) Early ischemia in experimental fecal peritonitis. Circ Shock 38: 22–28

    PubMed  CAS  Google Scholar 

  13. De Nobile J, Guzzetta P, Patterson K (1990) Pulse oximetry as a means of assessing bowel viability. J Surg Res 48: 21–23

    Article  Google Scholar 

  14. Gardner GP, LaMorte WW, Obi-Tabot ET, et al (1994) Transanal intracolonic pulse oximetry as a means of monitoring the adequacy of colonic perfusion. J Surg Res 57: 537–540

    Article  PubMed  CAS  Google Scholar 

  15. Mclver MA, Redfield AC, Benedict EB (1926) Gaseous exchange between the blood and the lumen of the stomach and intestines. Am J Physiol 76: 92–111

    Google Scholar 

  16. Bergofsky EH (1964) Determination of tissue O2 tension by hollow visceral tonometers: Effect of breathing enriched O2 mixtures. J Clin Invest 43: 193–200

    Article  PubMed  CAS  Google Scholar 

  17. Dawson AM, Trenchard D, Guz A (1965) Small bowel tonometry: Assesment of small gut mucosal oxygen tension in dog and man. Nature (London) 206: 943–944

    Article  CAS  Google Scholar 

  18. Kivisaari J, Niinikoski J (1973) Use of silastic sampling tube and capillary sampling technic in the measurement of tissue PO2 and PCO2. Am J Surg 125:623–627

    Article  PubMed  CAS  Google Scholar 

  19. Fiddian-Green RG, Pittenger G, Whitehouse WM (1982) Back diffusion of CO2 and its influence on the intramural pH in gastric mucosa. J Surg Res 33: 39–48

    Article  PubMed  CAS  Google Scholar 

  20. Fiddian-Green RG, Baker S (1987) Predictive value of the stomach wall pH for complications after cardiac operations: Comparison with other monitoring. Crit Care Med 15: 153–156

    Article  PubMed  CAS  Google Scholar 

  21. Desai V, Weil MH, Tang W, Yang G, Bisera J (1993) Gastric intramural PCO2 during peritonitis and shock. Chest 104: 1254–1258

    Article  PubMed  CAS  Google Scholar 

  22. Nok M, Weil MH, Sun S, Gazmuri RJ, Tang W, Pakula JL (1993) Comparison of gastric wall PCO2 during hemorrhagic shock. Circ Shock 40: 194–199

    Google Scholar 

  23. Antonsson JB, Boyle CC, Kruithoff KL, et al (1990) Validity of tonometric measures of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259: G519–519G523

    Google Scholar 

  24. Grum CM, Fiddian-Green RG, Pittenger GL, Grant BJB, Rothman D, Dantzker DR (1984) Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 56: 1065–1069

    PubMed  CAS  Google Scholar 

  25. Fiddian-Green RG (1989) Studies in splanchnic ischemia and multiple organ failure. In: Marston A, Bulkely GB, Fiddian-Green RG, Haglund UH (eds) Splanchnic ischemia and multiple organ failure. Edward Arnold, London, pp 349–363

    Google Scholar 

  26. Heard SO, Helmsmoortel CM, Kent JC, Shahnarian A, Fink MP (1990) Gastric tonometry in healthy volunteers: Effect of ranitidine on calculated intramural pH. Crit Care Med 19: 271–274

    Article  Google Scholar 

  27. Kolkman JJ, Groeneveld ABJ, Meuwissen SGM (1994) Effect of ranitidine on basal and bicarbonate enhanced intragastric PCO2: A tonometric study. Gut 35: 737–741

    Article  PubMed  CAS  Google Scholar 

  28. Higgins D, Mythen MG, Webb AR (1994) Low intramucosal pH is associated with failure to acidify the gastric lumen in response to pentagastrin. Intensive Care Med 20:105–108

    Article  PubMed  CAS  Google Scholar 

  29. Salzman AL, Strong KE, Wang H, Wollert PS, Vandermeer TJ, Fink MP (1994) Intraluminal “balloonless” air tonometry: A new method for determination of gastrointestinal mucosal carbon dioxide. Crit Care Med 22:126–134

    PubMed  CAS  Google Scholar 

  30. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76: 2443–2451

    PubMed  CAS  Google Scholar 

  31. Benjamin E, N-Fonayim JM, Hannon EM, et al (1992) Effects of systemic metabolic alkalosis on gastrointestinal tonometry. Crit Care Med 20 (Suppl): S65 (Abst)

    Google Scholar 

  32. Boyd O, Mackay CJ, Lamb G, Bland JM, Grounds RM, Bennett ED (1993) Comparison of clinical information gained from routine blood gas analysis and from gastric tonometry for intramural pH. Lancet 34: 142–146

    Article  Google Scholar 

  33. Crispin C, Jones W, Daffurn K (1995) How consistently do RNs perform the procedure of collecting specimens for measurement of gastric pHi and CO2. Intensive Crit Care Nurs 11: 123–125

    Article  PubMed  CAS  Google Scholar 

  34. Takala J, Parviainen IMS, Ruokonen E, Hamalainen E (1994) Saline PCO2 is an important source of error in the assessment of gastric intramucosal pH. Crit Care Med 22: 1877–1879

    PubMed  CAS  Google Scholar 

  35. Riddington D, Venkatesh B, Clutton BT, Bion J (1994) Measuring carbon dioxide tension in saline and alternative solutions: Quantification of bias and precision in two blood gas analyzers. Crit Care Med 22: 96–100

    PubMed  CAS  Google Scholar 

  36. Doglio GR, Pusajo JF, Egurrola MA, et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19: 1037–1040

    Article  PubMed  CAS  Google Scholar 

  37. Maynard N, Biahari D, Beale R, et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270: 1203–1210

    Article  PubMed  CAS  Google Scholar 

  38. Gys T, Hubens A, Neels H, Ludo F, Lauwers F, Peeters R (1988) Prognostic value of gastric intramural pH in surgical intensive care patients. Crit Care Med 16: 1222–1224

    Article  PubMed  CAS  Google Scholar 

  39. Mohsenifar Z, Goldbach P, Tashkin DP (1983) Relationship between oxygen delivery and oxygen consumption in the adult respiratory distress syndrome. Chest 84: 267–271

    Article  PubMed  CAS  Google Scholar 

  40. Ivatury RR, Simon RJ, Havriliak D, Garcia G, Greenbarg J, Stahl WM (1995) Gastric mucosal pH and oxygen delivery and oxygen consumption indices in the assessment of adequacy of resuscitation after trauma: A prospective, randomized study. J Trauma 39: 128–136

    Article  PubMed  CAS  Google Scholar 

  41. Mythen MG, Webb AR (1995) Per-operative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130: 423–429

    Article  PubMed  CAS  Google Scholar 

  42. Noone RB, Yen MHN, Leone BJ, Mythen MG (1996) In vitro validation of an automated gastrointestinal tonometer (the Tonocap). Intensive Care Med 22: S65 (Abst)

    Article  Google Scholar 

  43. Noone RB, Yen MHN, Leone BJ, Mythen MG (1996) In vivo validation of an automated gastrointestinal tonometer (the Tonocap) in a canine haemorrhage model. Intensive Care Med 22: S66 (Abst)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mythen, M., Faehnrich, J. (1996). Monitoring Gut Perfusion. In: Rombeau, J.L., Takala, J. (eds) Gut Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80224-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80224-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80226-3

  • Online ISBN: 978-3-642-80224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics