Skip to main content

Pathophysiology of Gut Dysfunction in Shock and Sepsis

  • Chapter
Gut Dysfunction in Critical Illness

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 26))

  • 79 Accesses

Abstract

It is generally assumed that gut dysfunction occurs early in shock, sepsis and following trauma, and that gut dysfunction may influence the further development into multiple organ failure (MOF) [1]. The concept that gut dysfunction and mucosal injury of the gut is an unfavorable prognostic sign in surgical critical illness is fairly widely accepted [2, 3]. However, there is much more controversy as to whether there is a causal relationship between mucosal injury and development of MOF, and if so by which mechanisms this relation is excerpted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) (1989) Splanchnic ischemia and multiple organ failure, Edward Arnold, London

    Google Scholar 

  2. Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339: 195–199

    Article  PubMed  CAS  Google Scholar 

  3. Maynard N, Bihari D, Beale R, et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270: 1203–1210

    Article  PubMed  CAS  Google Scholar 

  4. Lundgren O (1989) Physiology of the intestinal circulation. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund U (eds), Splanchnic ischemia and multiple organ failure, Edward Arnold, London, pp 29–40

    Google Scholar 

  5. Folkow B (1971) Regulation of the peripheral circulation. Br Heart J 33 (Suppl): 27–31

    Article  PubMed  Google Scholar 

  6. Haglund U, Lundgren O (1972) The effects of vasoconstrictor fibre stimulation on the consecutive vascular sections of the small intestine of the cat during prolonged regional hypotension. Acta Physiol Scand 85: 547–558

    Article  PubMed  CAS  Google Scholar 

  7. Bailey RW, Bulkley GB, Hamilton SR, et al (1987) Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock. Am J Surg 153: 108–116

    Article  PubMed  CAS  Google Scholar 

  8. Arvidsson D, Lindgren S, Almqvist P, et al (1990) Role of the renin-angiotensin system in liver blood flow reduction produced by positive end-expiratory pressure ventilation. Acta Chir Scand 156: 353–358

    PubMed  CAS  Google Scholar 

  9. Bulkley GB, Kvietys PR, Parks DA, et al (1985) Relationship of blood flow and oxygen consumption to ischemic injury in the canine small intestine. Gastroenterology 89: 852–857

    PubMed  CAS  Google Scholar 

  10. Arvidsson D, Rasmussen I, Almqvist P, et al (1991) Splanchnic oxygen consumption in septic and hemorrhagic shock. Surgery 2: 190–197

    Google Scholar 

  11. Folkow B (1967) Regional adjustments of intestinal blood flow. Gastroenterology 2: 423–432

    Google Scholar 

  12. Lundgren O, Haglund U (1978) The pathophysiology of the intestinal countercurrent exchanger. Life Sciences 23: 1411–1422

    Article  PubMed  CAS  Google Scholar 

  13. Bohlen HG (1980) Intestinal tissue PO2 and microvascular responses during glucose exposure. Am J Physiol 238 (Heart Circ Physiol 7): H164–H171

    PubMed  CAS  Google Scholar 

  14. Falk A, Redfors S, Myrvold HE, et al (1985) Small intestinal mucosal lesions in feline septic shock: A study on the pathogenesis. Circ Shock 17: 327–337

    PubMed  CAS  Google Scholar 

  15. Grum CM, Fiddian-Green RG, Pittenger GL, et al (1984) Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 56: 1065–1069

    PubMed  CAS  Google Scholar 

  16. Fiddian-Green RG (1989) Studies in splanchnic ischemia and multiple organ failure. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund U (eds) Splanchnic ischemia and multiple organ failure, Edward Arnold, London, pp 347–363

    Google Scholar 

  17. Montgomery A, Hartmann M, Jönsson K, et al (1989) Intramucosal pH measurement with tonometers for detecting gastrointestinal ischemia in porcine hemorrhagic shock. Circ Shock 29: 319–327

    PubMed  CAS  Google Scholar 

  18. Fink MP, Cohn SM, Lee PC, et al (1989) Effect of lipopolysaccharide on intestinal intramucosal hydrogen ion concentration in pigs. Evidence of gut ischemia in a normodynamic model of septic shock. Crit Care Med 17: 641–646

    CAS  Google Scholar 

  19. Rasmussen I, Haglund U (1992) Early gut ischemia in experimental fecal peritonitis. Circ Shock 38: 22–28

    PubMed  CAS  Google Scholar 

  20. Montgomery A, Almqvist P, Arvidsson D, et al (1990) Early detection of gastrointestinal mucosal ischemia in porcine E. coli sepsis. Acta Chir Scand 146: 613–620

    Google Scholar 

  21. Fink MP, Cohn SM, Lee PC, et al (1991) Maintenance of superior mesenteric arterial perfusion prevents increased intestinal mucosal permeability in endotoxic pigs. Surgery 110: 154–161

    PubMed  CAS  Google Scholar 

  22. Antonsson JB, Haglund UH (1995) Gut intramucosal pH and intraluminal PO2 in a porcine model of peritonitis or haemorrhage. Gut 37: 791–797

    Article  PubMed  CAS  Google Scholar 

  23. Antonsson JB, Engström L, Rasmussen I, et al (1995) Changes in gut intramucosal pH and gut oxygen extraction ratio in a porcine model of peritonitis and hemorrhage. Crit Care Med 23: 1872–1881

    Article  PubMed  CAS  Google Scholar 

  24. Wollert S, Rasmussen I, Lundberg C, et al (1993) Inhibition of CD18-dependent adherence of polymorphonuclear leukocytes does not affect liver oxygen consumption in fecal peritonitis in pigs. Circ Shock 41: 230–238

    PubMed  CAS  Google Scholar 

  25. Gutierrez G, Lund N, Bryan-Brown CW (1989) Cellular oxygen utilization during multiple organ failure. Crit Care Med 5: 271–287

    CAS  Google Scholar 

  26. Haglund U (1991) Hypoxic damage of the gut in shock. In: Schalg G, Redl H, Siegel JH, Traber DL (eds) Shock sepsis and organ failure. Springer-Verlag, Berlin, pp 314–321

    Google Scholar 

  27. Wollert S, Antonsson J, Gerdin B, et al (1995) Intestinal mucosal injury during porcine faecal peritonitis. Eur J Surg 161: 741–750

    PubMed  CAS  Google Scholar 

  28. Chiu Dd-J, McArdle AH, Brown R, et al (1970) Intestinal mucosal lesion in low-flow states. I. A Morphological, hemodynamic and metabolic reappraisal. Arch Surg 101: 478–483

    Article  PubMed  CAS  Google Scholar 

  29. Haglund U, Hultén L, Lundgren O, et al (1975) Mucosal lesions in the human small intestine in shock. Gut 16: 979–984

    Article  PubMed  CAS  Google Scholar 

  30. Haglund U, Bulkley GB, Granger DN (1987) On the pathophysiology of intestinal ischemic injury. Acta Chir Scand 153: 321–324

    PubMed  CAS  Google Scholar 

  31. Park PO, Haglund U, Bulkley GV, et al (1990) The sequence of development of intestinal tissue injury following strangulation ischemia and reperfusion. Surgery 107: 574–580

    PubMed  CAS  Google Scholar 

  32. Brown RA, Chiu C-J, Scott HJ, et al (1970) Ultrastructural changes in the canine ileal mucosal cell after mesenteric arterial occlusion. Arch Surg 101: 290–297

    Article  PubMed  CAS  Google Scholar 

  33. Shute K (1976) Effect of intraluminal oxygen on experimental ischaemia of the intestine. Gut 17: 1001–1006

    Article  PubMed  CAS  Google Scholar 

  34. Haglund U (1993) Therapeutic potential of intraluminal oxygenation. Crit Care Med 21: S69–S71

    Article  PubMed  CAS  Google Scholar 

  35. Park PO, Haglund U (1992) Regeneration of small bowel mucosa after intestinal ischemia. Crit Care Med 20: 135–139

    Article  PubMed  CAS  Google Scholar 

  36. Granger DN, Rutili G, McCord JM (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81: 22–29

    PubMed  CAS  Google Scholar 

  37. Parks DA, Bulkley GB, Granger DN, et al (1982) Ischemic injury in the cat small intestine: Role of superoxide radicals. Gastroenterology 82: 9–15

    PubMed  CAS  Google Scholar 

  38. Schoenberg MH, Poch B, Younes M, et al (1991) Involvement of neutrophils in post-is-chaemic damage to the small intestine. Gut 32: 905–912

    Article  PubMed  CAS  Google Scholar 

  39. Morris JB, Haglund UH, Bulkley GB, et al (1986) Direct demonstration of oxygen free radical generation from a living, intact organ (the feline intestine). Surg Forum 37: 123–125

    CAS  Google Scholar 

  40. Hoshino T, Maley WR, Bulkley GB, et al (1988) Arbation of free radical-mediated reperfusion injury for the salvage of kidneys taken from non-heartbeating donors. Transplantation 45: 284–289

    Article  PubMed  CAS  Google Scholar 

  41. Parks DA, Williams TK, Beckman JS (1988) Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: A reevaluation. Am J Physiol (Gastrointest Liver Physiol 17) 254:G768–G774

    PubMed  CAS  Google Scholar 

  42. Bulkely GB (1994) Reactive oxygen metabolites and reperfusion injury: Aberrant triggering of reticuloendothelial function. Lancet 344: 934–936

    Article  Google Scholar 

  43. Granger DN (1988) Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 255 (Heart Circ Physiol 24): H1269–H1275

    PubMed  CAS  Google Scholar 

  44. Schlichting E, Grotmol T, Kahler H, et al (1995) Alterations in mucosal morphology and permeability, but no bacterial or endotoxin translocation take place after intestinal ischemia and early reperfusion in pigs. Shock 3: 116–124

    PubMed  CAS  Google Scholar 

  45. Deitch E (1992) Multiple organ failure. Ann Surg 216: 117–134

    Article  PubMed  CAS  Google Scholar 

  46. Moore FA, Moore EE, Poggetti R, et al (1991) Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma. J Trauma 31: 629–638

    Article  PubMed  CAS  Google Scholar 

  47. Brathwaite CEM, Ross SE, Nagele R, et al (1993) Bacterial translocation occurs in humans after traumatic injury: Evidence using immunofluorescence. J Trauma 34:586–590

    Article  PubMed  CAS  Google Scholar 

  48. Pape HC, Dwenger A, Regel G, et al (1994) Increased gut permeability after multiple trauma. Br J Surg 81: 850–852

    Article  PubMed  CAS  Google Scholar 

  49. Roumen RMH, Hendriks T, Wevers A, et al (1993) Intestinal permeability after severe trauma and hemorrhagic shock is increased without relation to septic complications. Arch Surg 128: 453–457

    Article  PubMed  CAS  Google Scholar 

  50. Haglund U, Lundgren O (1973) Cardiovascular effects of blood borne material release from the cat small intestine during simulated shock conditions. Acta Physiol Scand 89: 558–570

    Article  PubMed  CAS  Google Scholar 

  51. Haglund U, Myrvold H, Lundgren O (1978) Cardiac and pulmonary function in regional intestinal shock. Arch Surg 113: 963–969

    Article  PubMed  CAS  Google Scholar 

  52. Hallström S, Doidl B, Müller U, et al (1991) A cardiodepressant factor isolated from blood blocks Ca2+ current in cardiomyocytes. Am J Physiol 260 (Heart Circ Physiol 29) 260: H869–H876

    PubMed  Google Scholar 

  53. Parrillo JE, Burch C, Shelhamer JH, et al (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    Article  PubMed  CAS  Google Scholar 

  54. Österberg J, Johnsson C, Gannedahl G, et al (1996) Alterations in mucosal immune cell distribution in septic rats. Shock (in press) (Abst)

    Google Scholar 

  55. Deitch EA, Dazhong X, Franko L, et al (1994) Evidence favoring the role of the gut as a cytokine-generating organ in rats subjected to hemorrhagic shock. Shock 1: 141–146

    Article  PubMed  CAS  Google Scholar 

  56. Moore EE, Moore FA, Franciose RJ, et al (1994) The postischemic gut serves as a priming bed for circulating neutrophils that provoke multiple organ failure. J Trauma 37: 881–887

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haglund, U. (1996). Pathophysiology of Gut Dysfunction in Shock and Sepsis. In: Rombeau, J.L., Takala, J. (eds) Gut Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80224-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80224-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80226-3

  • Online ISBN: 978-3-642-80224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics