Skip to main content

Waste Analysis

  • Chapter
  • 227 Accesses

Part of the book series: Environmental Engineering ((ENVENG))

Abstract

Solid waste is extraordinarily heterogeneous. It varies with an enormous number of factors: country, region, season, economics, etc. Successful management of waste, and successful design of systems to achieve its control, require a thorough knowledge of its composition and properties

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali Khan, M. Z.and Abu-Ghararah, Ziad H., “New Approach for Estimating Energy Content of Municipal Solid Waste,” Journal of Environmental Engineering 117(3): 376–380.

    Google Scholar 

  • Anid, P. J. (1985) Caracterisation de l’Etat de Maturation du Compost. Annales de Gembloux, 88: 119–131.

    Google Scholar 

  • ASTM (1992), 1992 Annual Book of Standards, vol. 11.04, American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Barlaz, M. A., Schaefer, D. M., and Harn, R. K. (1989), “Inhibition of Methane Formation from Municipal Refuse in Laboratory Scale Lysimeters,” Applied Biochemistry and Biotechnology, 21: 181–205.

    Article  Google Scholar 

  • Bott, T. L. and Kaplan, L. A. (1985), “Bacterial Biomass, Metabolic State, and Activity in Stream Sediments: Relation to Environmental Variables and Multiple Assay Comparisons,” Appl. Environ. Microbiol. 50: 508–522.

    CAS  Google Scholar 

  • Buckley, Thomas J. (1991), “Calculation of Higher Heating Values of Biomass Materials and Waste Components from Elemental Analyses,” Resources, Conservation, and Recycling, 5: 329–341.

    Article  Google Scholar 

  • Chapman, A. G., Fall, L., and Atkinson, D. E. (1971), “Adenylate Energy Charge in Escherichia Coli During Growth and Starvation,” 7. Bact., 108: 1072–1086.

    CAS  Google Scholar 

  • Christian, R. R., Bancroft, K., and Weibe, W. J. (1975), “Distribution of Microbial Adenosine Triphosphate in Salt Marsh Sediments at Sapelo Island, Georgia,” Soil Sci. 119: 89–87.

    Article  CAS  Google Scholar 

  • Collins, F. (1977), “Mise au Point d’une Determination de l’ATP dans les Composts et Application a Leur Caracterisation,” Sol et Dechets Solides: Resultats de Recherches, 11: 355–360.

    Google Scholar 

  • Daley, R. J. (1979), “Direct Epifluorescence Enumeration of Native Aquatic Bacteria: Uses, Limitations, and Comparative Accuracy,” In Native Aquatic Bacteria: Enumeration, Activity, and Ecology, American Society for Testing and Materials, Philadelphia, pp. 29–45.

    Chapter  Google Scholar 

  • Fillip, Z. and Kuster, E. (1976), “Microbial Activity and the Turnover of Organic Matter in Municipal Refuse Disposed of in a Landfill,” Eur. J. Appl. Microbiol. Biotechnol., 33: 143–149.

    Google Scholar 

  • Hasselriis, F. (1984), Refuse-Derived Fuel, Butterworth Publishers, Boston.

    Google Scholar 

  • Hodson, R. E., Holm-Hansen, O., and Azam, F. (1976), “Improved Methodology for ATP Determination in Marine Environments,” Mar. Biol. 34: 143–149.

    Article  CAS  Google Scholar 

  • Holm-Hansen, O. (1969), “Determination of Microbial Biomass in Ocean Profiles,” Limnol. Oceanogr., 14: 740–747.

    Article  CAS  Google Scholar 

  • Hotten, P. M., Jones, K. L., and Grainger, J. M. (1983), “The Application of a Mathematical Model to an Appraisal of the Cellulose-Azure Method for Determining Cellulase Activity,” Eur. J. Appl. Microbiol. Biotechnol., 18: 344–349.

    Article  CAS  Google Scholar 

  • Jones, K. L. and Grainger, J. M. (1983), “The Application of Enzyme Activity Measurements to a Study of Factors Affecting Protein, Starch and Cellulose Fermentation in Domestic Refuse,” Eur. J. Appl. Microbiol. Biotechnol., 18: 181–185.

    Article  CAS  Google Scholar 

  • Karl, D. M. (1980), “Cellular Nucleotide Measurements and Applications in Microbial Ecology,” Microbiol Reviews, 44: 739–796.

    CAS  Google Scholar 

  • Karl, D. M. and Holm-Hansen, O. (1978), “Methodology and Measurement of Adenylate Energy Charge Ratios in Environmental Samples,” Mar. Biol., 48: 185–197.

    Article  CAS  Google Scholar 

  • Klee, Albert J. (1980), Quantitative Decision-Making, vol. 3 in Vesilind , Aarne P., ed., Design & Management for Resource Recovery, Ann Arbor Science, Ann Arbor, MI, ch’s 1 and 2.

    Google Scholar 

  • Oren, A. (1987), “On the Use of Tetrazolium Salts for the Measurement of Microbial Activity in Sediments,” FEMS Microbiol. Ecol., 45: 127–133.

    Article  CAS  Google Scholar 

  • Packard, T. T., Healy, M. L., and Richards, F. A. (1971), “Vertical Distribution of the Activity of the Respiratory Electron Transport System in Marine Plankton,” Limnol Oceanogr., 16: 60–70.

    Article  Google Scholar 

  • Philips, D. S. (1978), Basic Statistics for Health Science Students, W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Tchobanoglous, George T., Theisen, Hilary, and Vigil, Samuel (1993), Integrated Solid Waste Management: Engineering Principles and Management Issues, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Vesilind, P. Aarne and Alan E. Rimer (1981), Unit Operations in Resource Recovery Engineering, Prentice Hall, Englewood Cliffs, NJ, Ch. 4.

    Google Scholar 

  • U. S. CFR§268 Appendix 2.

    Google Scholar 

  • Zimmerman, R., Iturriaga, R., and Becker-Birck, J. (1978), “Simultaneous Determination of the Total Number of Aquatic Bacteria and the Number thereof Involved in Respiration, ”Appl. Environ. Microbiol. 36: 926–935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stessel, R.I. (1996). Waste Analysis. In: Recycling and Resource Recovery Engineering. Environmental Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80219-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80219-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80221-8

  • Online ISBN: 978-3-642-80219-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics