Routes to Temporal Chaos

  • Alexander S. Mikhailov
  • Alexander Yu. Loskutov
Part of the Springer Series in Synergetics book series (SSSYN, volume 52)

Abstract

Temporal chaos sets in after the breakdown of long-range time order and the disappearence of coherent temporal behavior. In the previous chapter we outlined one of the possible transitions to chaos in the special case of models with discrete time. Now we want to discuss the principal scenarios leading to temporal chaos in general dynamical systems. Before proceeding to this discussion, we briefly describe some of the concepts of bifurcation theory which are used in the analysis.

Keywords

Vortex Convection Mercury Manifold Peri 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    A.A. Andronov, S. Khaikin: Theory of Oscillations (ONTI, Moscow 1939) [English transi.: Princeton University Press, Princeton 1949 ]Google Scholar
  2. 6.2
    E. Hopf: Phys. Sachs. Acad. Wiss. Leipzig 94, 1–22 (1942)Google Scholar
  3. 6.3
    V.I. Arnold (ed.): Dynamical Systems V ( Springer, Berlin, Heidelberg 1990 )Google Scholar
  4. 6.4
    B.D. Hassard, N.D. Kazarinoff, Y.-H. Wan: Theory and Applications of Hopf Bifurcation ( Cambridge University Press, Cambridge 1981 )MATHGoogle Scholar
  5. 6.5
    J.E. Marsden, M. McCracken: The Hopf Bifurcation and Its Applications (Springer, Berlin, Heidelberg 1976 )Google Scholar
  6. 6.6
    G. Ioss, D.D. Joseph: Elementary Stability and Bifurcation Theory (Springer, Berlin, Heidelberg 1980 )Google Scholar
  7. 6.7
    S.N. Chow, J.K. Hale: Methods of Bifurcation Theory (Springer, Berlin, Heidelberg 1982 )Google Scholar
  8. 6.8
    L.D. Landau: Dokl. Acad. Nauk. SSSR 44, 339–342 (1944)Google Scholar
  9. 6.9
    L.D. Landau, E.M. Lifshitz: Mechanics of Continuous Media ( Gostekhizdat, Moscow 1954 )Google Scholar
  10. 6.10
    E. Hopf: Comm. Pure Appl. Math. 1, 303–322 (1948)MATHMathSciNetGoogle Scholar
  11. 6.11
    E. Hopf: In Proc. Conf. Diff. Eqs., Univ. of Maryland, 1956, 49–57Google Scholar
  12. 6.12
    J.-P. Eckmann: Rev. Mod. Phys. 53, No. 4, 643–654 (1981)CrossRefMATHMathSciNetGoogle Scholar
  13. 6.13
    D. Ruelle, F. Takens: Commun. Math. Phys. 20, 167–192 (1971)CrossRefMATHMathSciNetGoogle Scholar
  14. 6.14
    S. Newhouse, D. Ruelle, F. Takens: Commun. Math. Phys. 64, 35–40 (1978)CrossRefMATHMathSciNetGoogle Scholar
  15. 6.15
    A. Andronov, L. Pontryagin: Dokl. Akad. Nauk SSSR 14, 247–250 (1937)Google Scholar
  16. 6.16
    C. Grebogi, E. Ott, J.A. Yorke: Phys. Rev. Lett. 51, 339–342 (1983)CrossRefMathSciNetGoogle Scholar
  17. 6.17
    R.W. Walden, P. Kolodner, A. Ressner, C.M. Surko: Phys. Rev. Lett. 53, 242–245 (1984)CrossRefGoogle Scholar
  18. 6.18
    C. Grebogi, E. Ott, J.A. Yorke: Physica D 15, 354–373 (1985)CrossRefMATHMathSciNetGoogle Scholar
  19. 6.19
    M.J. Feigenbaum, L.P. Kadanoff, S.J. Shenker: Physica D 5, 370–386 (1982)CrossRefMathSciNetGoogle Scholar
  20. 6.20
    S. Ostlund, D. Rand, J. Sethna, E. Siggia: Physica D8, 303–342 (1983)Google Scholar
  21. 6.21
    S.J. Shenker: Physica D5, 405–411 (1982)Google Scholar
  22. 6.22
    B. Hu: Phys. Lett. A98, 79–82 (1983)CrossRefMathSciNetGoogle Scholar
  23. 6.23
    H.G. Schuster: Deterministic Chaos ( Physik-Verlag, Weinheim 1984 )MATHGoogle Scholar
  24. 6.24
    J.P. Gollub, H.L. Swinney: Phys. Rev. Lett. 35, 927–930 (1975)CrossRefGoogle Scholar
  25. 6.25
    H.L. Swinney, J.P. Gollub: Physics Today 31, No. 8, 41–49 (1978)Google Scholar
  26. 6.26
    S. Fauve, A. Libchaber: “Rayleigh-Benard experiment in a low Prandtl number fluid mercury”, in Chaos and Order in Nature, ed. by H. Haken ( Springer, Berlin, Heidelberg 1981 ) pp. 25–35Google Scholar
  27. 6.27
    H. Haken: Advanced Synergetics (Springer, Berlin, Heidelberg 1983 )Google Scholar
  28. 6.28
    O.E. Rossler: Phys. Lett. A57, 397–398 (1976)CrossRefGoogle Scholar
  29. 6.29
    D. Gurel, O. Gurel: Oscillations in Chemical Reactions (Springer, Berlin, Heidelberg 1983 )Google Scholar
  30. 6.30
    J.P. Crutchfield, J.D. Farmer, N. Packard, R. Shaw, G. Jones, R.J. Donnely: Phys. Lett. A 76, 1–4 (1980)CrossRefMathSciNetGoogle Scholar
  31. 6.31
    B.A. Huberman, J.P. Crutchfield, N.H. Packard: Appl. Phys. Lett. 37, 750–752 (1980)CrossRefGoogle Scholar
  32. 6.32
    B.A. Huberman, J.P. Crutchfield: Phys. Rev. Lett. 43, 1743–1747 (1979)CrossRefGoogle Scholar
  33. 6.33
    J.P. Crutchfield, J.D. Farmer, B.A. Huberman: Phys. Rep. 92, 45–82 (1982)CrossRefMathSciNetGoogle Scholar
  34. 6.34
    B. Shraiman, C.E. Wayne, P.C. Martin: Phys. Rev. Lett. 46, 935–939 (1981)CrossRefMathSciNetGoogle Scholar
  35. 6.35
    Y. Pomeau, P. Manneville: Commun. Math. Phys. 74, 189–197 (1980)CrossRefMathSciNetGoogle Scholar
  36. 6.36
    P. Manneville, Y. Pomeau: Physica D 1, 219–226 (1980)CrossRefMathSciNetGoogle Scholar
  37. 6.37
    V.S. Afraimovich, L.P. Shilnikov: Soy. Math.—Dokl. 15, 1761 (1974)Google Scholar
  38. 6.38
    V.I. Luk’yanov, L.P. Shilnikov: Soy. Math.—Dokl. 19, 1314 (1978)MATHGoogle Scholar
  39. 6.39
    B. Hu: “Functional renormalization group equations approach to the transition to chaos”, in Chaos and Statistical Methods, ed. by Y. Kuramoto ( Springer, Berlin, Heidelberg 1984 ) pp. 72–82CrossRefGoogle Scholar
  40. 6.40
    B. Hu, J. Rudnick: Phys. Rev. Lett. 48, 1645–1648 (1982)CrossRefMathSciNetGoogle Scholar
  41. 6.41
    B. Hu, J. Rudnick: Phys. Rev. A26, 3035–3036 (1982)CrossRefMathSciNetGoogle Scholar
  42. 6.42
    P. Berge, M. Dubois, P. Manneville, Y. Pomeau: J. Physique Lett. (Paris) 41, L341 — L345 (1980)Google Scholar
  43. 6.43
    M. Dubois, M.A. Rubio, P. Berge: Phys. Rev. Lett. 51, 1446–1449 (1983)CrossRefMathSciNetGoogle Scholar
  44. 6.44
    C. Vidal: “Dynamical instabilities observed in the Belousov-Zhabotinsky system”, in Chaos and Order in Nature, ed. by H. Haken ( Springer, Berlin, Heidelberg 1981 ) pp. 68–82Google Scholar
  45. 6.45
    Y. Pomeau, J.C. Roux, A. Rossi, C. Vidal: J. Physique Lett. (Paris) 42, L271 - L272 (1981)Google Scholar
  46. 6.46
    W.L. Ditto, S. Rauseo, R. Cawley et al.: Phys. Rev. Lett. 63, 923–926 (1989)CrossRefGoogle Scholar
  47. 6.47
    R.K. Tavakol, A.J. Tworkowski: Phys. Lett. A 126, 318–324 (1988)CrossRefMathSciNetGoogle Scholar
  48. 6.48
    J.-Y. Huang, J.J. Kim: Phys. Rev. A36, 1495–1497 (1987)Google Scholar
  49. 6.49
    D.J. Biswas, Vas Dev, U.K. Chatterjee: Phys. Rev. A35, 456–458 (1987)CrossRefGoogle Scholar
  50. 6.50
    K. Kaneko: Progr. Theor. Phys. 72, 202–215 (1984)CrossRefMATHGoogle Scholar
  51. 6.51
    M.R. Bassett, J.L. Hudson: Physica D35, 289–298 (1989)Google Scholar
  52. 6.52
    K. Kaneko: Collapse of Tori and Genesis of Chaos in Dissipative Systems ( World Scientific, Singapore 1986 )MATHGoogle Scholar
  53. 6.53
    V.S. Anishchenko, T.E. Letchford, M.A. Safonova: Radiophys. and Quantum Electron. 27, 381–390 (1984)CrossRefMathSciNetGoogle Scholar
  54. 6.54
    A.I. Goldberg, Ya.G. Sinai, K.M. Khanin: Russian Math. Surveys 38:1, 187 (1983)Google Scholar
  55. 6.55
    B. Hu, I.I. Satija: Phys. Lett. A98, 143–146 (1983)CrossRefMathSciNetGoogle Scholar
  56. 6.56
    H. Dadio: Progr. Theor. Phys. 70, 879–882 (1983)CrossRefGoogle Scholar
  57. 6.57
    M. Sano, Y. Sawada: “Chaotic attractors in Rayleigh-Benard Systems”, in Chaos and Statistical Methods, ed. by Y. Kuramoto ( Springer, Berlin, Heidelberg 1984 ) pp. 226–231CrossRefGoogle Scholar
  58. 6.58
    E. Ott, C. Grebogi, J.A. Yorke: Phys Rev. Lett. 64, 1196 (1990)CrossRefMATHMathSciNetGoogle Scholar
  59. 6.59
    T. Shinbrot, C. Grebogi, E. Ott, J.A. Yorke: Nature 363, 411 (1993)CrossRefGoogle Scholar
  60. 6.60
    D. Auerbach, E. Ott, C. Grebogi, J.A. Yorke: Phys. Rev. Lett. 69, 3479 (1992)CrossRefMATHMathSciNetGoogle Scholar
  61. 6.61
    T. Shinbrot, E. Ott, C. Grebogi, J.A. Yorke: Phys. Rev. A 45, 4165 (1992)CrossRefMathSciNetGoogle Scholar
  62. 6.62
    T. Shinbrot, C. Grebogi, E. Ott, A. Yorke: Phys. Lett. A 169, 349 (1992)CrossRefMathSciNetGoogle Scholar
  63. 6.63
    B.A. Huberman, E. Lumer: IEEE Trans. Circ. Systs. 37, 547 (1990)CrossRefGoogle Scholar
  64. 6.64
    A. Hübler, R. Georgii, M. Kuckier, W. Stelyl, E. Ltischer: Hely. Phys. Acta 61 897 (1988)Google Scholar
  65. 6.65
    E.A. Jackson, A. Hübler: Physica D 44, 407 (1990)CrossRefMATHMathSciNetGoogle Scholar
  66. 6.66
    V.V. Alexeev, A. Yu. Loskutov: Soy. Phys.-Dokl. 32, 270 (1987)Google Scholar
  67. 6.67
    A. Yu. Loskutov, A.I. Shishmarev: Chaos 4, 391 (1994)CrossRefMATHMathSciNetGoogle Scholar
  68. 6.68
    A. Yu. Loskutov: J. Phys. A 26, 4581 (1993)CrossRefMATHMathSciNetGoogle Scholar
  69. 6.69
    N.L. Komarova, A. Yu. Loskutov: Matem. Modelir. 7, 133 (1995)MATHMathSciNetGoogle Scholar
  70. 6.70
    I.M. Starobinets, A.S. Pikovsky: Phys. Lett. A 181, 149 (1993)CrossRefGoogle Scholar
  71. 6.71
    R. Lima, M. Pettini: Phys. Rev. A 41, 726 (1990)CrossRefMathSciNetGoogle Scholar
  72. 6.72
    Yu. S. Kivshar, F. Rödelsperger, H. Benner: Phys. Rev. E 49, 319 (1994)MathSciNetGoogle Scholar
  73. 6.73
    Ph. V. Bayly, L.N. Virgin: Phys. Rev. E 50, 604 (1994)CrossRefGoogle Scholar
  74. 6.74
    K. Pyragas: Phys. Lett. A 170, 421 (1992)CrossRefGoogle Scholar
  75. 6.75
    K. Pyragas: Z. Naturforsch. A 48, 629 (1993)Google Scholar
  76. 6.76
    D. Vassiliadis: Physica D 71, 319 (1994)CrossRefMATHGoogle Scholar
  77. 6.77
    S. Bielawski, D. Derozier, P. Glorieux: Phys. Rev. E 49, 971 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
  • Alexander Yu. Loskutov
    • 2
  1. 1.Max-Planck-GesellschaftFritz-Haber-InstitutGermany
  2. 2.Department of PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations