Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 52))

  • 218 Accesses

Abstract

The mathematical models known as iterative maps are closely related to dynamical systems with continuous time. They can arise naturally in problems where the state of a system is allowed to change only at some prescribed instants in time. In fact, iterative maps are a special case of an automaton with instantaneous states described by continuous variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Henon: Commun. Math. Phys. 50, 69–77 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. N.V. Butenin, Yu.I. Neimark, N.A. Fufayev: Introduction to the Theory of Nonlinear Oscillations ( Nauka, Moscow 1987, in Russian)

    MATH  Google Scholar 

  3. P. Collet, J.P. Eckmann: Iterated Maps of the Interval as Dynamical Systems ( Birkhäuser, Boston 1980 )

    Google Scholar 

  4. A.N. Sharkovskii: Ukr. Mat. Zh. 1, 61–71 (1964)

    Google Scholar 

  5. A.N. Sharkovskii, Yu.A. Maistrenko, E.Yu. Romanenko: Difference Equations and Their Applications (Naukova Dumka, Kiev 1986, in Russian)

    Google Scholar 

  6. T.Y. Li, J.A. Yorke: Amer. Math. Mon. 82, 985–992 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. M.J. Feigenbaum: J. Stat. Phys. 19, 25–52 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. M.J. Feigenbaum: J. Stat. Phys. 21, 669–706 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. M.J. Feigenbaum: Los Alamos Science 1, 4–27 (1980); Physica D7, 16–39 (1983)

    MathSciNet  Google Scholar 

  10. S. Grossmann, S. Thomae: Z. Naturforsch. 32a, 1353–1363 (1977)

    MathSciNet  Google Scholar 

  11. B. Hu: “Functional renormalization-group equation approach to the transition to chaos”, in Chaos and Statistical Methods, ed. by Y. Kuramoto ( Springer, Berlin, Heidelberg 1984 )

    Google Scholar 

  12. O.E. Lanford: Bull. Amer. Math. Soc. 6, 427–434 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Collet, J.P. Eckmann, O.E. Lanford: Commun. Math. Phys. 76, 211–254 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. H.G. Schuster: Deterministic Chaos ( Physik-Verlag, Weinheim 1984 )

    MATH  Google Scholar 

  15. E.B. Vul, Ya.G. Sinai, K.M. Khanin: Russian Math. Surveys 39:3 (1984)

    Google Scholar 

  16. J.A. Yorke, C. Grebogi, E. Ott, L. Tedeschini-Lalli: Phys. Rev. Lett. 54, 1093 (1985)

    Article  MathSciNet  Google Scholar 

  17. M. Bucher: Phys. Rev. 33A, 3544–3546 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikhailov, A.S., Loskutov, A.Y. (1996). Iterative Maps. In: Foundations of Synergetics II. Springer Series in Synergetics, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80196-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80196-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80198-3

  • Online ISBN: 978-3-642-80196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics