Pharmacodynamics and Pharmacokinetics of Acamprosate: An Overview

  • P. Durbin
  • T. Hulot
  • S. Chabac
Conference paper

Abstract

Acamprosate (calcium acetylaminopropane sulphonate) is the active substance of Campral and has the following chemical structure (CH3-CO-NH-CH2-CH2CH2-S03)2Ca. The molecular structure is related to biologically active amino acids such as:
  • Taurine (NH2-CH2-CH2-SO3H),

  • Gamma-aminobutyric acid (GABA), (NH-CH2-CH2-CH2-COOH),

  • Glutamic acid NH2-CHCOOH-CH2-CH2-COOH.

Keywords

Nicotinate NMDA Diazepam Taurine Valproate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Qatari M, Littleton J (1995) The anti-craving drug acamprosate inhibits calcium channel antagonist binding to membranes from rat cerebral cortex. Alcohol Alcohol 30 (4): 551Google Scholar
  2. Aubin HJ, Lehert P, Beaupere B, Parot P, Barrucand D (1995) Tolerability of the combination of acamprosate with drugs used to prevent alcohol withdrawal syndrome. Alcoholism 31 (1–2): 25–38Google Scholar
  3. Beauge F, Achard S, Niel E, Durbin P (1991) Acamprosate interactions with ethanol effects on biological membranes. A preliminary fluorescence polarization study. Alcohol Alcohol 26 (2): 235Google Scholar
  4. Boismare F, Daoust M, Moore ND, Saligaut C, Lhuintre JP, Chretien P, Durlach JA (1984) Homotaurine derivative reduces the voluntary intake of ethanol by rats: are cerebral GABA receptors involved?. Pharmacol Biochem Behav 21 (5): 787–789PubMedCrossRefGoogle Scholar
  5. Bouchenafa O, Cwynarski K, Littleton J (1990) Interactions between excitatory amino acids and aotal in a cell culture model of ethanol dependence. Alcohol Clin Exp Res 14 (2): 312Google Scholar
  6. Dahchour A, Quertemont E, Durbin P, De Witte P (1994) Acute ethanol increases taurine in the nucleus accumbens but not glutamate nor GABA = Microdialysis study. 7th ESBRA Congress, Queensland, Australia, 26 June-1 July, 1994; 33A-no 5. 14Google Scholar
  7. Daoust M, Saligaut C, Moore ND, Chretien P, Boismare F (1984) Effet de l’acétyl homotaurinate de calcium sur les constantes des cinétiques d’accumulation de 3H GABA dans les synaptosomes striataux de rats préférant l’alcool. J Pharmacol 15 (4): 458–459Google Scholar
  8. Daoust M, Lhuintre JP, Saligaut C, Chretien P, Moore ND, Boismare F (1985) Calcium bis acétyl homotaurine (Ca AOTA):un nouvel agoniste gabaergique? J Pharmacol 16 (4): 521Google Scholar
  9. Daoust M, Protais P, Boucly P, Tran G, Rinjard P, Dokhan R, Fillion G (1989) Intervention of AOTAL on serotoninergic and noradrenergic system. Alcohol Alcohol 24 (4): 370Google Scholar
  10. Daoust M, Legrand E, Tran G, Durbin P, Gewiss M, Heidbreder C, De Witte P (1990) Acamprosate treatment differentially modulates synaptosomal gaba uptake in chronically alcoholized rats. Alcohol Clin Exp Res 14 (2): 281Google Scholar
  11. Daoust M, Legrand E, Aubin N, Durbin P (1991) Acamprosate increases, in vitro, 3H-glutamate synaptosomal uptake without affecting glutamate release. Alcohol Alcohol 26 (2): 239Google Scholar
  12. Daoust M, Legrand E, Gewiss M, Heidbreder C, De Witte P, Tran G, Durbin P (1992) Acamprosate modulates synaptosomal GABA transmission in chronicallly alcoholised rats. Pharmacol Biochem Behav 41 (4): 669–674PubMedCrossRefGoogle Scholar
  13. Daoust M, Legrand E, Durbin P (1993) 3H-Acamprosate (AOTAL) binding in hippocampal membrane preparation of alcoholism rats. Alcohol Alcohol 28(2): C2. 9Google Scholar
  14. Durbin P, Belleville M (1995) Rat pharmacokinetic profile of acamprosate in plasma, brain and CSF. Alcohol Alcohol 30 (4): 548Google Scholar
  15. Durlach J (1987) Le N acétyl homotaurinate de calcium: une thérapeutique nouvelle de l’alcoolisme à sites d’action pharmacologique multiple. French-Italian joint meeting on medical chemistry, Pisa, Italy, 22–26 Sept, 1987Google Scholar
  16. Durlach J, Rinjard P, Sprince H, Smith G (1988) Similar antagonist effects of Ca N-acetylhomotaurinate on depression of motor activity and lethality induced by acetaldehyde or ethanol. Methods Find Exp Clin Pharmacol 10 (7): 437–447PubMedGoogle Scholar
  17. Gerra G, Caccavari R, Delsignore R, Vourna S, Maestra D, Ugolotti G, Passeri M (1992) Pituitary responses to CA-acetyl homotaurinate in normal subjects and alcoholics. Neuroendocrinol Lett 14 (2): 119–126Google Scholar
  18. Gewiss M, Heidbreder C, Opsomer L, Durbin P, De Witte P (1991) Acamprosate and diazepam differentially modulate alcohol-induced behavioural and cortical alterations in rats following chronic inhalation of ethanol vapour. Alcohol Alcohol 26 (2): 129–137PubMedGoogle Scholar
  19. Gill K, Amit Z (1987) Effects of serotonin uptake blockade on food water and ethanol consumption in rats. Alcohol Clin Exp Res 11 (5): 444–449PubMedCrossRefGoogle Scholar
  20. Grant KA, Woolverton WL (1989) Reinforcing and discriminative stimulus effects of Ca-acetyl homotaurine in animals. Pharmacol Biochem Behav 32 (3): 607–611PubMedCrossRefGoogle Scholar
  21. Gutierrez S, Daoust M, Rinjard P, Lhuintre JP, Boismare F (1987) L’acétylhomotaurinate de calcium, molécule à propriétés gabaergiques, atténue le syndrome de sevrage alcoolique chez la souris C57BL. Rev Alcool 32 (4): 241–247Google Scholar
  22. Korpi ER (1994) Role of GABAA receptors in the actions of alcohol and in alcoholism: recent advances. Alcohol Alcohol 29 (2): 115–129PubMedGoogle Scholar
  23. Le Magnen J, Tran G, Durlach J (1987a) Lack of effects of Ca-acetyl homotaurinate on chronic and acute toxicities of ethanol in rats. Alcohol 4 (2): 103–108PubMedCrossRefGoogle Scholar
  24. Le Magnen J, Tran G, Durlach J, Martin C (1987b) Dose-dependent suppression of the high alcohol intake of chronically intoxicated rats by Ca-acetyl homotaurinate. Alcohol 4 (2): 97102Google Scholar
  25. Lesch OM, Walter W, Fischer P, Platz W, Haring C, Leitner A, Benda N (1994) Acamprosate helps to reduce craving. Annual Scientific Meeting of the research society on alcoholism, RSA, Maui, Hawaii, 18–23 June, 1994, 464-no. 265Google Scholar
  26. Littleton J (1995) Acamprosate in alcohol dependence: how does it work. Addiction 90: 1179–1188PubMedCrossRefGoogle Scholar
  27. Littleton JM, Dunnage J, Pagonis C (1988) Alcohol dependence and modulation of neuronal calcium channels. In: Kuriyama K, Takada A, Ishu H (eds) Biomedical and Social Aspects of Alcohol and Alcoholism Elsevier, Amsterdam, pp 229–234Google Scholar
  28. Paille F, Guelfi JD, Perkins A, Royer RJ, Steru L, Parot P (1995) Double-blind randomized multicentre trial of acamprosate in maintaining abstinence from alcohol. Alcohol Alcohol 30 (2): 239–247PubMedGoogle Scholar
  29. Rassnick S, Damico E, Riley E, Pulvirenti L, Zeglgansberger W, Koob GF (1992) GABA and nucleus accumbens glutamate neurotransmission modulate ethanol self-administration in rats. Ann New York Acad Sci 654: 502–505CrossRefGoogle Scholar
  30. Rinjard P, Alcindor LG, Ladure P, Durlach P, Tran G (1988) Effects of withdrawal on the C/P molar ratio and phospholipase activities in erythrocyte membranes of AOTA-Ca treated ethanol fed rats. Alcohol Alcohol 23 (3): A35Google Scholar
  31. Rouhani S, Tran G, Durlach J, Leplaideur F, Emmanouilidis E, Poenaru S (1988) Vigilance states (VS) and cerebral monoaminergic (CMA) metabolism in the alcohol treated rat (RETOH): effect of calcium acetyl homotaurinate (Ca-AOTA). In: Kuriyama K, Takada A, Ishu H (eds) Biomedical and Social Aspects of Alcohol and Alcoholism. Elsevier, Amsterdam, pp 243–246Google Scholar
  32. Samson HH, Harris RA (1992) The neurobiology of alcohol abuse. TIPS 13: 206–211PubMedGoogle Scholar
  33. Tsai G, Gastfriend DR, Coyle JT (1995) The glutamaergic basis of human alcoholism. AMJ Psychiatr 152 (3): 332–340Google Scholar
  34. Zeise ML, Kasparow S, Capogna M, Zieglgansberger W (1990) Calciumdiacetylhomotaurinate ( Ca-AOTA) decreases the action of excitatory amino acids in the rat neocortex in vitro. Prog Clin Biol Res 351: 237–242PubMedGoogle Scholar
  35. Zeise ML, Kasparov S, Capogna M, Zieglgansberger W (1993) Acamprosate (calciumacetylhomotaurinate) decreases postsynaptic potentials in the rat neocortex: possible involvement of excitatory amino acid receptors. Eur J Pharmacol 231 (1): 47–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • P. Durbin
    • 1
  • T. Hulot
    • 1
  • S. Chabac
    • 1
  1. 1.Research and Development CentreGroupe LIPHALyonFrance

Personalised recommendations