Skip to main content

Mechanisms of Drug Resistance in Mycobacterium tuberculosis

  • Chapter
Tuberculosis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 215))

Abstract

Fifty years ago Selman Waksman and his colleagues discovered streptomycin and, for the first time, provided a chemotherapeutical approach to tuberculosis treatment as an alternative to fresh air, diet and physical exercise. Soon after the initiation of the chemotherapy era with streptomycin it was recognized that not all cases of tuberculosis could be cured due to the emergence of resistant mutants (Mitchison 1950). In the following years many other drugs were discovered, some of them too toxic for clinical use, but others like isoniazid, pyrazinamide, ethambutol or rifampin were very active (Forbes et al. 1965; Fox 1951; Tsukamura et al. 1958; Yeager et al. 1952), and physicians realised that the association of several drugs given simultaneously prevented the emergence of resistant mutants (American Thoracic Society 1986; O’Brien 1993). When tuberculosis results from infection with drug susceptible strains of M. tuberculosis, the success rate of short course chemotherapy is close to 100% provided that the regimen is strictly adhered to by both the physician and the patient (American Thoracic Society 1992; Grosset 1989; Hopewell 1994; Iseman 1994; Iseman et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Thoracic Society (1986) Treatment of tuberculosis and tuberculous infection in adults and children. Am Rev Respir Dis 134: 355–363

    Google Scholar 

  • American Thoracic Society (1992) Control of tuberculosis in the United States. Am Rev Respir Dis 146: 1623–1633

    Google Scholar 

  • Association Française Raoul Follereau, the STD3 Program of the European Community (Grant TS3*CT93*0243) and the National Institute of Allergy and Infectious Diseases (A137015).

    Google Scholar 

  • Ayvazian LF (1993) History of tuberculosis. In: Reichman LB, Hershfield ES (eds) Tuberculosis-a comprehensive international approach. Dekker, New York, pp 1–20

    Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr. (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227–230

    Google Scholar 

  • Barclay WR, Ebert RH, Koch-Weser D (1953) Mode of action of isoniazid, part I. Am Rev Tuberc 67: 490–496

    PubMed  CAS  Google Scholar 

  • Barnes PF, Bloch AB, Davidson PT, Snider DE (1991) Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med 324: 1644–1650

    PubMed  CAS  Google Scholar 

  • Beggs WH, Andrews FA (1976) Inhibition of dihydrostrepomycin binding to Mycobacterium smegmatis by monovalent and divalent cation salts. Antimicrob Agents Chemother 9: 393–396

    PubMed  CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem 42: 471–506

    PubMed  CAS  Google Scholar 

  • Bergler H, Högenauer G, Turnowsky F (1992) Sequences of the envM gene and two mutated allels in Escherichia coli. J Gen Microbiol 138: 2093–2100

    PubMed  CAS  Google Scholar 

  • Bernstein J, Lott WA, Steinberg BA, Yale HL (1952) Chemotherapy of experimental tuberculosis. Am Rev Tuberc 65: 357–364

    PubMed  CAS  Google Scholar 

  • Bloom BR, Murray JL (1992) Tuberculosis: commentary on a reemergent killer. Science 257: 1055–1064

    PubMed  CAS  Google Scholar 

  • Böttger EC (1994) Resistance to drugs targeting protein synthesis in mycobacteria. Trends Microbiol 2: 416–421

    PubMed  Google Scholar 

  • Bryan LE, van den Elzen HM (1977) Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother 12: 163–177

    PubMed  CAS  Google Scholar 

  • Buck M, Schnitzer RJ (1952) The development of drug resistance of M. tuberculosis to isonicotinic acid hydrazide. Am Rev Tub 65: 759–760

    CAS  Google Scholar 

  • Burgess RR, Erickson B, Gentry D, Gribstov M, Hager D, Lesley S, Strickland M, Thompson N (1987) Bacterial RNA polymerase subunits and genes. RNA polymerase and the regulation of transcrption. Elsevier, New York, pp 3–15

    Google Scholar 

  • Canetti G, Grosset J (1961) Teneur des souches sauvages de Mycobacterium tuberculosis en variants résistants à l’isoniazide et en variants résistants à la streptomycine sur milieu de Loewenstein-Jensen. Ann Inst Pasteur 101: 28

    CAS  Google Scholar 

  • Centers for Disease Control (1993) Initial therapy for tuberculosis in the era of multidrug resistance: recommendations of the advisory council for the elimination of tuberculosis. MMWR 42 (RR-7): 1–8

    Google Scholar 

  • Claiborne A, Fridovitch I (1979) Purification of the o-dianisidine peroxidase from Escherichia coli. J Biol Chem 254: 4245–4252

    PubMed  CAS  Google Scholar 

  • Cohn ML, Kovitz C, Oda U, Middlebrook G (1954) Studies on isoniazid and tubercle bacilli. Il. The growth requirements, catalase activity, and pathogenic properties of isoniazid-resistant mutants. Am Rev Tuberc 70: 641–669

    PubMed  CAS  Google Scholar 

  • Cole ST (1994) Drug resistance mechanisms employed by Mycobacterium tuberculosis. Trends Microbiol 2: 412–415

    Google Scholar 

  • Cole ST, Smith DR (1994) Toward mapping and sequencing the genome of Mycobacterium tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control. American Society of Microbiology, Washington DC, pp 227–238

    Google Scholar 

  • Collins CH, Uttley AHC (1985) In vitro susceptibility of mycobacteria to ciprofloxacin. J Antmicrob Chemother 16: 575–580

    CAS  Google Scholar 

  • Cooksey RC, Crawford JT, Jacobs WR, Shinnick TM (1993) A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agent Chemother 37: 1348–1352

    CAS  Google Scholar 

  • Crawford JT, Bates JH (1979) Isolation of plasmids from mycobacteria. Infect Immun 24 (3): 979–981

    PubMed  CAS  Google Scholar 

  • Daley CL, Small PM, Schecter GF, Schoolnik GK, McAdam RA, Jacobs WR, Hopewell PC (1992) An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus. An analysis using restriction-fragment-length polymorphisms. N Engl J Med 326: 231–235

    PubMed  CAS  Google Scholar 

  • Davidson LA, Takayama K (1979) Isoniazid inhibition of the synthesis of monounsaturated longchain fatty acids in Mycobacterium tuberculosis H37Ra. Antimicrob Agent Chemother 16: 104–105

    CAS  Google Scholar 

  • Edlin BR, Tokars JI, Grieco MH, Crawford JT, Williams J, Sordillo EM, Ong KR, Kilburn JO, Dooley SW, Castro KG, Jarvis WR, Holmberg SD (1992) An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N Engl J Med 326: 1514–1521

    PubMed  CAS  Google Scholar 

  • Falkinham JO Ill, Crawford JT (1994) Plasmids. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control. American Society for Microbiology, Washington DC, pp 185–198

    Google Scholar 

  • Fenlon CH, Cynamon MH (1986) Comparative in vitro activities of ciprofloxacin and other 4-quinolones against Mycobacterium tuberculosis and Mycobacterium intracellulare. Antimicrob Agent Chemother 29: 386–388

    CAS  Google Scholar 

  • Finken M, Kirschner P, Meier A, Wrede A, Böttger EC (1993) Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbial 9: 1239–1246

    CAS  Google Scholar 

  • Forbes M, Kuck NA, Peets EA (1965) Effect of ethambutol on nucleic acid metabolism in Mycobacterium smegmatis and its reversal by polyamines and divalent cations. J Bacterial-89: 1299–1305

    CAS  Google Scholar 

  • Fox HH (1951) Synthetic tuberculostatics show promise. Chem Eng News 29: 3963–3964

    Google Scholar 

  • Frieden TR, Sterling T, Pablos-Mendez A, Kilburn JO, Cauthen GM, Dooley SW (1993) The emergence of drug-resistant tuberculosis in New York City. N Engl J Med 328: 521–526

    PubMed  CAS  Google Scholar 

  • Funatsu G, Wittmann HG (1975) Location of amino acid replacements in protein S12 isolated from Escherichia colt mutants resistant to streptomycin. J Mol Biol 68: 547–550

    Google Scholar 

  • Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981) The moelcular basis of antibiotic action. Wiley, London

    Google Scholar 

  • Galili H, Fromm H, Aviv D, Edelman M, Galun E (1989) Ribosomal protein S12 as a site of streptomycin resistance in Nicotinia chloroplasts. Mol Gen Genet 218: 289–292

    PubMed  CAS  Google Scholar 

  • Garvin RT, Biswas DK, Gorini L (1974) The effects of streptomycin or dihydrostreptomycin binding to 16S RNA or to 30S ribosomal subunits. Proc Natl Acad Sci USA 71: 3814–3818

    PubMed  CAS  Google Scholar 

  • Goble M, Madsen LA, Waite D, Ackerson L, Horsburgh R (1993) Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampin. N Engl J Med 328: 527–532

    PubMed  CAS  Google Scholar 

  • Goswitz JJ, Willard KE, Fasching CE, Perterson LR (1992) Detection of gyrA gene mutations associated with ciprofloxacin resistance in methicillin resistant Staphylococcus aureus: analysis by polymerase chain reaction and direct DNA sequencing. Antimicrob Agents Chemother, 36: 1166–1169

    PubMed  CAS  Google Scholar 

  • Grosset J, Levantis S (1983) Adverse effects of rifampin. Rev Infect Dis 5 [Suppl 3]: 5440 - S446

    Google Scholar 

  • Grosset JH (1989) Present status of chemotherapy for tuberculosis. Rev Infect Dis 11 [Suppl 2]: S347 - S352

    PubMed  Google Scholar 

  • Heifets L (1988) Qualitative and quantitative drug-susceptibility tests in mycobacteriology. Am Rev Respir Dis 137: 1217–1222

    PubMed  CAS  Google Scholar 

  • Herman RP, Weber MM (1980) Isoniazid interaction with tyrosine as a possible mode of action of the drug in mycobacteria. Antimicrob Agents Chemother 17: 170–178

    PubMed  CAS  Google Scholar 

  • Hermans PWM, van Soolingen D, van Embden JDA (1992) Characterization of a major polymorphic tandem repeat in Mycobacterium tuberculosis and its potential use in the epidemiology of Mycobacterium kansasii and Mycobacterium gordonae. J Bacteriol 174: 4157–4156

    PubMed  CAS  Google Scholar 

  • Heym B, Zhang Y, Poulet S, Young D, Cole ST (1993) Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacterio 1175: 4255–4259

    Google Scholar 

  • Heym B, Honoré N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR Jr, van Embden JDA, Grosset JH, Cole ST (1994a) The implications of multidrug-resistance for the future of short course chemotherapy of tuberculosis: a molecular study. Lancet 344: 293–298

    PubMed  CAS  Google Scholar 

  • Heym B, Alzari PM, Honoré N, Cole ST (1994b) Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 15: 235–245

    Google Scholar 

  • Honoré N, Cole ST (1993) The moelcular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother 37: 414–418

    PubMed  Google Scholar 

  • Honoré N, Cole ST (1994) Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother 38: 238–242

    PubMed  Google Scholar 

  • Honoré N, Bergh S, Chanteau S, Doucet-Populaire F, Eiglmaier K, Gamier T, Georges C, Launois P, Limpaiboon T, Newton S, Niang K, del Portillo P, Ramesh GR, Reddi P, Ridel PR, Sittisombut N, WU-Hunter S, Cole ST (1993) Nucleotide Sequence of the first cosmid from the Mycobacterium leprae genome project: structure and function of the Rif-Str regions. Mol Microbiol 7: 207–214

    PubMed  Google Scholar 

  • Hooper DC, Wolfson JS (1993) Mechanisms of quinolone action and bacterial killing. Quinolone antimicrobial Agents. American Society for Microbiology, Washington DC, pp 53–76

    Google Scholar 

  • Hopewell PC (1994) The cure: organization and administration of therapy for tuberculosis. In: Porter JDH, McAdam KPW (eds) Tuberculosis–back to the future. Wiley, Chichester, pp 99–120

    Google Scholar 

  • Imboden P, Cole S, Bodmer T, Telenti A (1993) Detection of Rifampin Resistance Mutations in Mycobacterium tuberculosis and M. leprae. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic moelcular microbiology. Principles and applications. American Society for Microbiology, Washington DC, pp 519–526

    Google Scholar 

  • Isemen MD (1994) Evolution of drug-resistant tuberculosis: a tale of two species. Proc Natl Acad Sci USA 91: 2428–2429

    Google Scholar 

  • Iseman MD, Cohn DL, Sbarbaro JA (1993) Directly observed treatment of tuberculosis. N Engl J Med 328: 576–578

    PubMed  CAS  Google Scholar 

  • Jacobs WR Jr, Tuckman M, Bloom BR (1987) Introduction of foreign DNA into mycobacteria using a shuttle plasmid. Nature 327: 532–535

    PubMed  CAS  Google Scholar 

  • Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Rapid assessment of drug susceptibilities by means of luciferase reporter phages. Science 260: 819–822

    PubMed  CAS  Google Scholar 

  • Jarlier V, Nikaido H (1990) Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 172: 1418–1423

    PubMed  CAS  Google Scholar 

  • Jin DJ, Gross CA (1989) Characterization of the pleiotropic phenotypes of rifampin-resistant rpoB mutants of Escherichia coli. J Bacteriol 171: 5229–5231

    PubMed  CAS  Google Scholar 

  • Johnsson K, Schultz PG (1994) Mechanistic studies of the oxidation of isoniazid by the catalaseperoxidase from Mycobacterium tuberculosis. J Am Chem Soc 116: 7425–7426

    CAS  Google Scholar 

  • Kanner BI, Gutnick DL (1972) Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli. J Bacteriol 111: 287–289

    PubMed  CAS  Google Scholar 

  • Kapur V, Hamrick MR, LI L-L, Plikaytis BB, Shinnick TM, Telenti A, Jacobs WR, Banerjee A, Cole ST, Yam WC, Clarridge JE, Kreiswirth BN, Musser JM (1994) Application of automated DNA sequencing strategies to problems of Mycobacterium diagnostics: speciation by characterization of polymorphisms in the gene (hsp65) encoding a 65-kilodalton heat shock protein, and a rapid an unambiguous identification of mutations associated with antibiotic resistance in Mycobacterium tuberculosis. JAMA (submitted)

    Google Scholar 

  • Kempsell KE, Ji Y-E, Estrada-G ICE, Colston MJ, Cox RA (1992) The Nucleotide Sequence of the Promoter, 16S rRNA and Spacer Region of the Ribosomal RNA Operon of Mycobacterium tuberculosis and Comparison with Mycobacterium leprae Precursor rRNA. J Gen Microbiol 138: 1717–1727

    PubMed  CAS  Google Scholar 

  • Kilburn JO, Greenberg J (1977) Effect of ethambutol on the viable cell count in Mycobacterium smegmatis. Antimicrob Agent Chemother 11: 534–540

    CAS  Google Scholar 

  • Konno K, Feldmann FM, McDermott W (1967) Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95: 461–469

    PubMed  CAS  Google Scholar 

  • Krüger-Thiemer E, Kröger H, Nestler HJ, Seydel JK (1975) Bakteriologische Grundlagen der Chemotherapie der Tuberkulose. Mykobakterien and mykobakterielle Krankheiten. Fischer, Jena, pp 251–288

    Google Scholar 

  • Lalande V, Truffot-Pernot C, Paccaly-Moulin A, Grosset J, Ji B (1993) Powerful bactericidal activity of sparfloxacin (AT-4140) against Mycobacterium tuberculosis in mice. Antimicrob Agent Chemother 37: 407–413

    CAS  Google Scholar 

  • Loewen PC, Switala J, Triggs-Raine BL (1985) Catalases HPI and HPII in Escherichia coli are induced independently. Arch Biochem Biophys 243: 144–149

    PubMed  CAS  Google Scholar 

  • Loprasert S, Negoro S, Okada H (1988) Thermostable peroxidase from Bacillus stearothermophilus. J Gen Microbiol 134: 1971–1976

    PubMed  CAS  Google Scholar 

  • Mackaness GB (1956) The intracellular activation of pyrazinamide and nicotinamide. Am Rev Tuberc Pulm Dis 74: 718–728

    CAS  Google Scholar 

  • Martin C, Ranes M, Gicquel B (1990) Plasmids, antibiotic resistance, and mobile genetic elements in mycobacteria. In: McFadden J (ed) The molecular biology of the mycobacteria. Surrey University Press, London, pp 120–138

    Google Scholar 

  • McDermott W, Tompsett R (1954) Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc 71: 748–754

    Google Scholar 

  • Meier A, Kirschner P,Bange F-C, Vogel U, Böttger EC (1994) Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother 38: 228–233

    PubMed  CAS  Google Scholar 

  • Meyer H, MallyJ (1912) Ober Hydrazinderivate der Pyridincarbonsäuren. Monatshefte Chem 33: 393–414

    CAS  Google Scholar 

  • Middlebrook G (1952) Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am Rev Tuberc 65: 765–767

    PubMed  CAS  Google Scholar 

  • Miller LP, Crawford JT, Shinnick TM (1994) The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agent Chemother 38: 805–811

    CAS  Google Scholar 

  • Mitchison DA (1950) Development of streptomycin resistant strains of tubercle bacilli in pulmonary tuberculosis. Thorax 5: 144–161

    PubMed  CAS  Google Scholar 

  • Mitchison DA (1951) The segregation of streptomycin-resistant variants of Mycobacterium tuberculosis into groups with characteristic levels of resistance. J Gen Microbiol 5: 596–604

    PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327: 389–394

    PubMed  CAS  Google Scholar 

  • Montandon P-E, Wagner R, Stutz E (1986) E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant. EMBO J 5: 3705–3708

    PubMed  CAS  Google Scholar 

  • Morris SL, Nair J, Rouse DA (1992) The catalase-peroxidase of Mycobacterium intracellulare: nucleotide sequence analysis and expression in Escherichia coli. J Gen Microbiol 138: 2363–2370

    PubMed  CAS  Google Scholar 

  • Murray CJL, Styblo K, Rouillon A (1990) Tuberculosis in developing countries: burden, intervention and cost. Bull Int Un Tuberc 65: 6–24

    CAS  Google Scholar 

  • Nair J, Rouse DA, Bai G-H, Morris SL (1993) The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol 10: 521–527

    PubMed  CAS  Google Scholar 

  • Noter H (1984) Structure of ribosomal RNA. Annu Rev Biochem 53: 119–162

    Google Scholar 

  • O’Brien RJ (1993) The treatment of tuberculosis. In: Reichman LB, Hershfield ES (eds) Tuberculosis–a comprehensive international approach. Dekker, New York, pp 207–240

    Google Scholar 

  • Oram M, Fisher LM (1991) 4-Quinolone resistance mutation in the DNA gyrase of Escherichia coli clinical isolates identified using the polymerase chain reaction. Antimicrob Agent Chemother 35: 387–389

    CAS  Google Scholar 

  • Ovchinnikov YA, Monastyrskaya GS, Guriev SO, Kalinina NF, Sverdlof ED, Gragerov AI, Bass IA, Kiver IF, Moiseyeva EP, lgumnov VN, Mindlin SZ, Nikiforov VG, Khesin RP (1983) RNA polymerase rifampicin resistance mutations in Escherichia coli: sequence changes and dominance. Mol Gen Genet 190: 344–348

    PubMed  CAS  Google Scholar 

  • Peizer LR, Widelock D (1955) The correlation of rate of catalase activity,Guinea pig virulence, and isoniazid resistance of tubercle bacilli from specimens of patients under isoniazid therapy. Am Rev Respir Dis 72: 246–251

    CAS  Google Scholar 

  • Pessolani MCV, Smith DR, Rivoire B, McCormick J, Hefta SA, Cole ST, Brennan P (1994) Purification, characterization, gene sequence and significance of a bacterioferritin from Mycobacterium leprae. J Exp Med 180: 319–327

    PubMed  CAS  Google Scholar 

  • Rastogi N, Goh KS (1991) In vitro activity of the new difluorinated quinolone sparfloxacin (AT -4140) against Mycobacterium tuberculosis compared with activities of ofloxacin and ciprofloxacin. Antimicrob Agent Chemother 35: 759–764

    Google Scholar 

  • Rosner JL (1993) An alternative to Mycobacterium tuberculosis for studying isoniazid resistance: oxyR regulon mutants of Escherichia coli. Antimicrob Agent Chemother 37: 2251–2253

    CAS  Google Scholar 

  • Rosner JL, Storz G (1994) Peroxides and isoniazid-susceptibility of Escherichia coli and Mycobacterium smegmatis. Antimicrob Agent Chemother 38: 1829–1833

    CAS  Google Scholar 

  • Saaren M, Khuller GK (1990) Cell wall and membrane changes associated with ethambutol resistance in Mycobacterium tuberculosis H37Ra. Antimicrob Agent Chemother 34: 1773–1776

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primerdirected enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487–491

    PubMed  CAS  Google Scholar 

  • Schwartz WS, Moyer RE (1954) The chemotherapy of pulmonary tuberculosis with pyrazinamide used alone and in combination with streptomycin, para-aminosalicylic acid, or isoniazid. Am Rev Tuberc 70: 413–429

    PubMed  CAS  Google Scholar 

  • Sewell DL, Rashad AL, Rourke WJ, Poor SL, McCarthy JAC, Pfaller MA (1993) Comparison of the septi-chek AFB and BACTEC systems and conventional culture for recovery of mycobacteria. J Clin Microbiol 31: 2689–2691

    PubMed  CAS  Google Scholar 

  • Seydel JK, Schaper K-J, Wempe E, Cordes HP (1976) Mode of action and quantitative structure-activity correlations of tuberculostatic drugs of the isonicotinic acid hydrazide type. J Med Chem 19: 483–491

    PubMed  CAS  Google Scholar 

  • Shoeb HA, Bowman BU Jr, Ottolenghi AC, Merola AJ (1985) Evidence for the generation of active oxygen by isoniazid treatment of extracts of Mycobacterium tuberculosis H37Ra. Antimicrob Agent Chemother 27: 404–407

    CAS  Google Scholar 

  • Silve G, Valero-Guillen P, Quemard A, Dupont M, Daffe M, Laneelle G (1993) Ethambutol inhibition of glucose metabolism in mycobacteria: a possible target of the drug. Antimicrob Agent Chemother 37: 1536–1538

    CAS  Google Scholar 

  • Small PM, Shafer RW, Hopewell PC, Singh SP, Murphy MJ, Desmond E, Sierra MF, Schoolnik GK (1993) Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. N Engl J Med 328: 1137–1144

    PubMed  CAS  Google Scholar 

  • Smith DW, Tee TW, Baird C, Krishnapillai V (1991) Pseudomonad replication origins: a paradigm for bacterial origins? Mol Microbiol 5: 2581–2587

    PubMed  CAS  Google Scholar 

  • Snider DE Jr, Roper WL (1992) The new tuberculosis. N Engl J Med 326: 703–705

    Google Scholar 

  • Snider DE Jr, Good RC, Kilburn JO, Laskowski LF Jr, Lusk RH, Marr JH, Reggiardo Z, Middlebrook G (1981) Rapid drug-susceptibility testing of Mycobacterium tuberculosis. Am Rev Respir Dis 123: 402–406

    PubMed  CAS  Google Scholar 

  • Steenken W Jr, Meade GM, Wolinsky E, Coates EO Jr (1952) Demonstration of increased drug resistance of tubercle bacilli from patients treated with hydrazines of isonicotinic acid. Am Rev Tuberc 65: 754–758

    PubMed  CAS  Google Scholar 

  • Steenken W Jr, Wolinsky E, Smith MM, Montalbine V (1957) Further observations on pyrazinamide alone and in combination with other drugs in experimental tuberculosis. Am Rev Tub Pulm Dis 76: 643–659

    CAS  Google Scholar 

  • Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton ATPase. Science 263: 678–681

    PubMed  CAS  Google Scholar 

  • Takayama K, Kilburn JO (1989) Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agent Chemother 33: 1493–1499

    CAS  Google Scholar 

  • Takiff HE, Salazar L, Guerrero C, Philipp W, Huang WM, Kreisworth B, Cole S, Telenti A, Jacobs WR (1994) Cloning and nucleotide sequence of the Mycobacterium tuberculosis gyrA and gyrB genes, and characterization of quinolone resistance mutations. Antimicrob Agents Chemother 38: 773–780

    PubMed  CAS  Google Scholar 

  • Tarshis MS, Weed WA Jr (1953) Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am Rev Tuberc 67: 391–395

    PubMed  CAS  Google Scholar 

  • Telenti A, Imboden P, Marchesi F, Lowrie D, Cole ST, Colston MJ, Matter L, Schopfer K, Bodmer T (1993a) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341: 647–650

    PubMed  CAS  Google Scholar 

  • Telenti A, Imboden P, Marchesi F, Schmidheini T, Bodmer T (1993b) Direct, automated detection of rifampicin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 37: 2054–2058

    PubMed  CAS  Google Scholar 

  • Tenover FC, Crawford JT, Huebner RE, Gaiter LJ, Horsburgh CR, Good RC (1993) The resurgence of tuberculosis: is your laboratory ready? J Clin Mircobiol 31: 767–770

    CAS  Google Scholar 

  • Trias J, Benz R (1993) Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. J Biol Chem 268: 6234–6240.

    PubMed  CAS  Google Scholar 

  • Triggs-Raine BL, Doble BW, Mulvey MR, Sorby PA, Loewen PC (1988) Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. J Bact 1970: 4415–4419

    Google Scholar 

  • Trimble KA, Clark RB, Sanders WE Jr, Frankel JW, Cacciatore R, Valdez H (1987) Activity of ciprofloxacin against mycobacteria in vitro: comparison of BACTEC and macrobroth dilution methods. J Antimicrob Chemother 19: 617–622

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Tsukamura S (1963) Isotopic studies on the effect of isoniazid on protein synthesis of mycobacteria. Jpn J Tuberc 11: 14–17

    CAS  Google Scholar 

  • Tsukamura M, Hasimoto M, Noda Y (1958) Transformation of isoniazid and streptomycin resistance in Mycobacterium avium by the desoxyribonucleate derived from isoniazid-and streptomycin-doubleresistant cultures. Am Rev Respir Dis 81: 403–406

    Google Scholar 

  • Turnowsky F, Fuchs K, Jeschek C, Högenauer G (1989) envM genes of Salmonella typhimurium and Escherichia coli. J Bacteriol 171: 6555–6565

    PubMed  CAS  Google Scholar 

  • Wallace BJ, Davis BD (1973) Cyclic blockade of initiation sites by streptomycin-damaged ribosomes in Escherichia coli: an explanation for dominance of sensitivity. J Mol Biol 75: 377–390

    PubMed  CAS  Google Scholar 

  • Wang JC (1985) DNA topoisomerases. Annu Rev Biochem 54: 665–697

    PubMed  CAS  Google Scholar 

  • Wehrli W (1983) Rifampin: mechanisms of action and resistance. Rev Infect Dis 5: 5407–5411

    Google Scholar 

  • Weisblum B, Davies J (1968) Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev 32: 493–528

    PubMed  CAS  Google Scholar 

  • Wimpenny JWT (1967) Effect of isoniazid on biosynthesis in Mycobacterium tuberculosis var. bovis BCG. J Gen Microbiol 47: 379–388

    PubMed  CAS  Google Scholar 

  • Winder FG (1982) Effect of isoniazid on biosynthesis in Mycobacterium tuberculosis var. bovis BCG. J Gen Microbiol 47: 379–388

    Google Scholar 

  • Witzig RS, Franzblau SG (1993) Susceptibility of Mycobacterium kansasii to ofloxacin, sparfloxacin, clarithromycin, azithromycin, and fusidic acid. Antimicrob Agent Chemother 37: 1997–1999

    CAS  Google Scholar 

  • Wolfson JS, Hooper DC (1989) Bacterial resistance to quinolones. Rev Infect Dis 11: S960 - S968

    PubMed  CAS  Google Scholar 

  • Yeager RL, Munroe WGC, Dessau FL (1952) Pyrazinamide (aldinamide) in the treatment of pulmonary tuberculosis. Am Rev Tuberc 65: 523–534

    PubMed  CAS  Google Scholar 

  • Yew WW, Kwan Sy-L, Ma WK, Khin MA, Chau PY (1990) In vitro activity of ofloxacin against Mycobacterium tuberculosis and its clinical efficacy in multiply resistant pulmonary tuberculosis. J Antimicrob Chemother 26: 227–236

    PubMed  CAS  Google Scholar 

  • Yoshida H, Bogaki M, Nakamura M, Nakamura S (1990) Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agent Chemother 34: 1271–1272

    CAS  Google Scholar 

  • Youatt J (1969) A review of the action of isoniazid. Am Rev Respir Dis 99: 729–749

    PubMed  CAS  Google Scholar 

  • Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591–593

    PubMed  CAS  Google Scholar 

  • Zhang Y, Garbe T and Young D (1993) Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isloates resistant to a range of drug concentrations. Mol Microbiol 8: 521–524

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heym, B., Philipp, W., Cole, S.T. (1996). Mechanisms of Drug Resistance in Mycobacterium tuberculosis . In: Shinnick, T.M. (eds) Tuberculosis. Current Topics in Microbiology and Immunology, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80166-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80166-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80168-6

  • Online ISBN: 978-3-642-80166-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics