Skip to main content

Differential-algebraic systems in the chemical process simulation

  • Chapter
Scientific Computing in Chemical Engineering

Summary

Parallelizable numerical methods for solving large scale DAE systems are considered at the level of differential, nonlinear and linear equations. The problem of subsystem-wise partitioning based on unit-oriented modelling is discussed. The partitioning is used to parallelize waveform relaxation and block Jacobi-Newton type methods. Newton’s method has been implemented on a parallel computer Cray T3D to compute initial values. To solve large sparse systems of linear equations a parallelized Gaussian elimination method using pseudo-code generation techniques is installed on a vector computer Cray Y-MP and Cray T3D. The methods were tested by means of examples delivered with SPEEDUP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspen Technology, SPEEDUP, User Manual, Library Manual, Aspen Technology, Inc., Cambridge, Massachusetts, USA (1995)

    Google Scholar 

  2. Borchardt, J., Grund, F., Parallelisierung numerischer Methoden zur Lösunggrofier Systeme von Algebro-Differentialgleichungen, Bericht, WIAS Berlin (1994)

    Google Scholar 

  3. Brüll, L., Pallaske, U., On differential algebraic equations with discontinuities, Z. Angew. Math. Phys. (ZAMP) 43 (1992), 319–327

    Article  Google Scholar 

  4. Grund, F., Numerische Losung von hierarchisch strukturierten Systemen von Algebro-Differentialgleichungen. In Intern. Ser. of Num. Math., Vol. 117; Birkhäuser Verlag Basel, 1994, 17–31

    Google Scholar 

  5. Näher, St., LEDA: A Library of Efficient Datatypes and Algorithms, Max- Planck-Institut für Informatik Saarbriicken (1994)

    Google Scholar 

  6. Perkins, J.D., Sargent, R.W.H., SPEEDUP: A Computer Program for Steady State and Dynamic Simulation and Design of Chemical Processes, AIChE Symp.Ser. 214 (1982), 1–11

    Google Scholar 

  7. Petzold, L. R., DASSL differential algebraic system solver, Technical Report Category D2A2, Sandia National Laboratories, Livermore, CA (1983)

    Google Scholar 

  8. Yamamoto, F., Takahashi, S., Vectorized LU decomposition algorithms for large-scale circuit simulation, IEEE Trans, on Comp.-Aided Des. CAD-4 (1985), 232–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grund, F., Borchardt, J., Horn, D., Michael, T., Sandmann, H. (1996). Differential-algebraic systems in the chemical process simulation. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds) Scientific Computing in Chemical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80149-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80149-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80151-8

  • Online ISBN: 978-3-642-80149-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics