Skip to main content

A mathematical model of emulsion polymerization

  • Chapter
Scientific Computing in Chemical Engineering
  • 466 Accesses

Summary

Emulsion polymerization can be modelled by a nonlinear nonlocal first-order partial integro-differential equation for the particle density. Mathematics Subject Classification (1991): 35F25, 35Q80, 80A30, 82D60.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzenman, M., Th.A. Bak, Convergence to equilibrium in a system of reacting polymers. Comm. Math. Phys. 65, (1979), 203–230.

    Article  Google Scholar 

  2. Burobin, A.V., V.A. Galkin, Solutions of the coagulation equation. Diff. Urav. 17, (1981), 669–677.

    Google Scholar 

  3. Dubovskii, P.B., Generalized solutions of coagulation equations. Funktsiona’nyi analiz i ego prilozheniya. 25, (1991), 62–64.

    Google Scholar 

  4. Gajewski, H., On a first order partial differential equation with nonlocal nonlinearity. Math. Nachr. 111, (1983), 289–300.

    Article  Google Scholar 

  5. Gajewski, H., K. Zacharias, On an initial value problem for a coagulation equation with growth term. Math. Nachr. 109, (1982), 135–156.

    Article  Google Scholar 

  6. Gajewski, H., K. Zacharias, On an initial value problem for a transport equation in polymer chemistry. Tagung Numerische Behandlung von Differentialgleichungen, Martin-Luther-Univ., (1981), 26–29.

    Google Scholar 

  7. Gajewski, H., K. Zacharias, Über Transportgleichungen mit nichtlinearem Koagulationsoperator. Tagung Numerische Lösung von Differentialgleichungen Matzlow/Garwitz, (1982), Report R-Math-01/83, Inst. f. Math. AdW, (1983), 3–11.

    Google Scholar 

  8. Gajewski, H., K. Zacharias, A mathematical model of emulsion polymerization. Preprint 134, Weierstrafi-Institut fur Angewandte Analysis und Stochastik, Berlin, (1994).

    Google Scholar 

  9. Galkin, V.A., On existence and uniqueness of a solution of the coagulation equation. Diff. Urav. 13, (1977), 1460–1470.

    Google Scholar 

  10. Galkin, V.A., On stability and stabilization of solutions of the coagulation equation. Diff. Urav. 14, (1978), 1863–1874.

    Google Scholar 

  11. Galkin, V.A., P.B. Dubovskii, Solution of the coagulation equation with unbounded kernels. Diff. Urav. 22, (1986), 504–509.

    Google Scholar 

  12. Melzak, Z.A., A scalar transport equation. Trans. Am. Math. Soc. 85, (1957), 547–560.

    Google Scholar 

  13. Min, K.W., H.I. Gostin, Simulation of semi-batch polymerization reactors for polyvinyl chloride (PVC) system. Ind. Eng. Chem. Prod. Res. Dev. 18, (1979), 272–278.

    Google Scholar 

  14. Min, K.W., W.H. Ray, On the mathematical modeling of emulsion polymerization reactors. J. Macromol. Sci.-Rev. Macromol.Chem., Cll, (1974), 177– 255.

    Google Scholar 

  15. Min, K.W., W.H. Ray, The computer simulation of batch emulsion polymerization reactors through a detailed mathematical model. J. Appl. Polym. Sci. 22, (1978), 89–112.

    Google Scholar 

  16. Morgenstern, D., Analytical studies related to the Maxwell-Boltzmann equation. J. Rat. Mech. Analysis 4, (1955), 533–554.

    Google Scholar 

  17. Pruppacher, H.R., J.D. Klett, Microphysics of clouds and precipitation. Reidel, Dordrecht (1978).

    Google Scholar 

  18. Stewart, I.W., A global existence theorem for the general coagulationfragmentation equation. Math. Meth. in the Appl. Sci. 11, (1989), 627–648.

    Google Scholar 

  19. Stewart, I.W., On the coagulation-fragmentation equation. J. of Appl. Math. Phys. (ZAMP) 41, (1990), 917–924.

    Article  Google Scholar 

  20. Stewart, I.W., A uniqueness theorem for the coagulation-fragmentation equation. Math. Proc. Camb. Phil. Soc. 107, (1990), 573–578.

    Article  Google Scholar 

  21. Tauer, K., V.I. Anikeev, V.A. Kirilov, Modellentwicklung zur Beschreibung der kontinuierlichen Emulsionspolymerisation von Vinylchlorid. Acta Polymerica 11, (1985), 593–599.

    Article  Google Scholar 

  22. Tauer, K., G. Reinisch, H. Gajewski, I. MÜLler, Modeling of emulsion polymerization of vinyl chloride. J. Macromol. Sci.-Chem., A28 (3 & 4), (1991), 431–460.

    CAS  Google Scholar 

  23. Tauer, K., I. Muller, Modeling sustained oscillations in continuous emulsion polymerization of vinyl chloride. Preprint Max-Planck-Institute for Colloid and Interface Research (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gajewski, H., Zacharias, K. (1996). A mathematical model of emulsion polymerization. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds) Scientific Computing in Chemical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80149-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80149-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80151-8

  • Online ISBN: 978-3-642-80149-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics