Advertisement

Parallel Evolutionary Algorithms for Optimizing the Unifac Matrix on Workstation Clusters

  • Joachim K. Axmann
  • Michael Kleiber
  • Andreas Kothrade

Summary

Over the last two decades, the UNIFAC group contribution method has come to the fore in the prediction of vapor-liquid equilibria. In order to apply it to refrigerant mixtures, it was necessary to implement additional structure groups, whose interaction amongst each other and with the old groups had to be described by fitting the relevant parameters with respect to measurement data. This led to the problem of minimizing an objective function with approx. 200 variables.

This was done by applying evolutionary algorithms to this mathematical optimization problem, involving the mutation and selection processes known from biology. The optimum interplay of classic evolution strategies with new developed extensions as well as the use of parallel computers lead to results well below the local extremes found by using conventional search methods. The EVOBOX program package can be used for any minimization tasks with multivariable functions.

Keywords

Evolutionary Algorithm Quality Function Step Size Control Refrigerant Mixture Parallel Virtual Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kothrade, A., Optimierung paralleler Evolutionärer Algorithmen auf Workstation-CI us tern hinsichtlich Adaptivität und Effizienz, Diplomarbeit K9503, TU Braunschweig, IfRR, Braunschweig (1995)Google Scholar
  2. [2]
    Axmann, J.K., Optimierung von DWR-Nachladungen mit adaptiven Evolution salgorithmen auf Parallelrechnern, Jahrestagung Kerntechnik 1994, Stuttgart (1994)Google Scholar
  3. [3]
    Turan, R., Entwicklung effizienter Evolutionsalgorithmen für die Beladeplan- Optimierung von Druckwasserreaktoren, Diplomarbeit K9424, TU Braunschweig, IfRR, Braunschweig (1994)Google Scholar
  4. [4]
    Voegt, S., Lehmann, S., Axmann, J.K., Wiedereintrittsbahnen und ihre Optimierung durch einen Evolutionsalgorithmus, DGLR-Fachausschufi-Sitzung: Flugleistungen und Bahnen, Ottobrunn (1991)Google Scholar
  5. [5]
    Schliinder, E.U., Thurner, F., Destillation, Absorption, Extraktion, Georg Thieme Verlag Stuttgart • New York (1986)Google Scholar
  6. [6]
    Gmehling, J., Kolbe, B., Thermodynamic Georg Thieme Verlag Stuttgart • New York (1988)Google Scholar
  7. [7]
    Kleiber, M., Vapor-liquid equilibria of binary refrigerant mixtures containing propylene or R134a, Fluid Phase Equilibria 92, 149–194 (1994)CrossRefGoogle Scholar
  8. [8]
    Kleiber, M., Erweiterung der UNIFAC-Gruppenbeitragsmethode zur Vorhersage von Siedegleichgewichten bei Gemischen mit fiuorierten Alkanderivaten, Dissertation, TU Braunschweig, IfT, Braunschweig (1994)Google Scholar
  9. [9]
    Rechenberg, I., Evolutionsstrategie: Optimierung technischer Systeme nach dem Prinzip der biologischen Evolution, Frommann-Holzboog Verlag, Stuttgart (1972)Google Scholar
  10. [10]
    Schwefel, H.-P., Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Birkhäuser Verlag, Basel und Stuttgart (1977)Google Scholar
  11. [11]
    Holland, J., Adaption in Natural and Artificial Systems, University of Michigan Press, Ann Arbor (1975)Google Scholar
  12. [12]
    Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Massachusetts (1989)Google Scholar
  13. [13]
    Axmann, J.K., Parallelrechner-Nutzung zur mathematisch-technischen Optimierung mit Evolutionsalgorithmen, Informatik-Berichte 93-04, Braunschweig (1993)Google Scholar
  14. [14]
    Kirkpatrick S., Gelatt C.D., Vecchi M.P., Optimization by simulated annealing, Science, Vol. 220 (1983)Google Scholar
  15. [15]
    Dueck, G., Scheuer, T., Threshold Accepting: A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing, Journal of Computational Physics, Nr. 90, Heft 1 (1993)Google Scholar
  16. [16]
    Dueck, G., Scheuer, T., Wallmeier, H.-M., Toleranzschwelle und Sintflut: Neue Ideen zur Optimierung, Spektrum der Wissenschaft, Nr. 3 /93 (1993)Google Scholar
  17. [17]
    Beguelin, A., et al., PVM, Oak Ridge National Laboratory and Department of Math, and Computer Science, Atlanta (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Joachim K. Axmann
    • 1
  • Michael Kleiber
    • 2
  • Andreas Kothrade
    • 1
  1. 1.Institute for Spaceflight and Reactor TechnologyTechnical University of BraunschweigBraunschweigGermany
  2. 2.ProzeßtechnikHoechst AGFrankfurt a. M.Germany

Personalised recommendations