Application of Numerical Methods in Chemical Process Engineering

  • Frerich J. Keil

Abstract

Numerical methods in chemical engineering deal with a broad range of problems starting from calculations on atomic or molecular level to the optimization of complete chemical plants. From an engineer’s point of view, we will expound the following subjects:
  • quantum mechanical calculations of atoms and molecules

  • numerical treatment of chemical reaction kinetics

  • transport processes

  • mathematical description of unit operations

  • stationary and instationary simulation and optimization of chemical plants

Because of this extensive field we will have to refer to other overview papers.

Keywords

Zeolite Catalysis Nash Rosen Tray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kutzelnigg, W., 1993, Einführung in die theoretische Chemie 2. VCH, WeinheimGoogle Scholar
  2. 2.
    Szabo, A., Ostlund, N.S., 1982, Modern Quantum Chemistry. McGraw Hill, New YorkGoogle Scholar
  3. 3.
    McWeeny, J., 1992, Methods of Molecular Quantum Mechanics. Academic Press, New York (2nd Ed.)Google Scholar
  4. 4.
    Diercksen, G.H.F., Wilson, S. (Eds.), 1983, Methods in Computational Molecular Physics. Reidel, DordrechtGoogle Scholar
  5. 5.
    Davidson, E.R., 1975, J. Comput. Phys. 17, 87CrossRefGoogle Scholar
  6. 6.
    van Santen, R., 1991, Theoretical heterogeneous Catalysis. World Scientific, SingaporeGoogle Scholar
  7. 7.
    Yoshida, S., Sakaki, S., Kobayashi, H., 1994, Electronic Processes in Catalysis. VCH, WeinheimGoogle Scholar
  8. 8.
    Kryachko, E.S., Ludena, E.V., 1990, Energy Density Functional Theory of Many- Electron Systems. Kluwer Academic Publ., DordrechtCrossRefGoogle Scholar
  9. 9.
    Seminario, J.M., Politzer, P., 1995, Modern Density Functional Theory - A Tool for Chemistry. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Parr, R.G., Yang, W., 1989, Density-functional Theory of Atoms and Molecules. Oxford University Press, OxfordGoogle Scholar
  11. 11.
    Pyykko, P., 1988, Chem. Rev. 88, 563Google Scholar
  12. 12.
    Allen, M.P., Tildesley, D.J., 1993, Computer Simulation of Liquids. Clarendon Press, OxfordGoogle Scholar
  13. 13.
    Binder, K.; Heermann, D.W., 1988, Monte Carlo Simulation in Statistical Physics. Springer-Verlag, HeidelbergGoogle Scholar
  14. 14.
    Rubinstein, R.Y., 1981, Simulation and the Monte Carlo Method. John Wiley, New YorkGoogle Scholar
  15. 15.
    Kaios, M.H. and Whitlock, P.A., 1986, Monte Carlo Methods Vol. 1: Basics. John Wiley, New YorkGoogle Scholar
  16. 16.
    Heermann, D.W., 1986, Computational Simulation Methods in Theoretical Physics. Springer-Verlag, BerlinGoogle Scholar
  17. 17.
    Hinderer, J. and Keil, F.J., 1996, Chem. Eng. Sci. (accepted)Google Scholar
  18. 18.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.M. and Teller, E., 1953, J. Chem. Phys. 21, 1087Google Scholar
  19. 19.
    Berne, B.J. (Eds.), 1977, Statistical Mechanics. Plenum Press, New YorkGoogle Scholar
  20. 20.
    Hoover, W.G., 1986, Molecular Dynamics. Lecture Notes in Physics, Vol. 258, Springer-Verlag, HeidelbergGoogle Scholar
  21. 21.
    Van Gunsteren, W.F. and Berendsen, H.J.C., 1990, Angew. Chem. 102, 1020Google Scholar
  22. 22.
    Dunn, J.H. and Lambrakos, S.G., 1994, J. Comput. Phys. I II, 15Google Scholar
  23. 23.
    Bolton, K., and Nordholm, S., 1994, J. Comput. Phys. 113, 320Google Scholar
  24. 24.
    Plimpton, S., 1985, J. Comput. Phys. 117, 1Google Scholar
  25. 25.
    Bakker, A.F., Gilmer, G.H., Grabow, M.H. and Thompson, K., 1990, J. Comput. Phys. 90, 313Google Scholar
  26. 26.
    Bock, H.G., 1981, in Ebert, K.H., Deuflhard, P. and Jager, W. (Eds.): Modelling of Chemical Reaction Systems, Springer Series in Chemical Physics, Vol. 18, Springer- Verlag, Heidelberg, S. 102Google Scholar
  27. 27.
    Deuflhard, P. and Nowak, U., 1986, Ber. Bunsenges. Phys. Chem. 90, 940Google Scholar
  28. 28.
    Nowak, U. and Deuflhard, PI, 1985, Appl. Num. Math. 1, 59Google Scholar
  29. 29.
    Bader, G. and Deuflhard, P., 1983, Numer. Math. 41, 373Google Scholar
  30. 30.
    Hairer, E. and Wanner, G., 1991, Solving Ordinary Differential Equations I I. Stiff and Differential-Algebraic Problems. Springer-Verlag, HeidelbergGoogle Scholar
  31. 31.
    Deuflhard, P. and Bornemann, F., 1994, Numerische Mathematik I I. Walter de Gruyter, BerlinGoogle Scholar
  32. 32.
    Michelsen, M.L., 1976, AIChEJ. 22, 594Google Scholar
  33. 33.
    Hairer, E.; N0rsett, S.P. and Wanner, G., 1993, Solving Ordinary Differential Equations I. Nonstiff Problems. Springer-Verlag, HeidelbergGoogle Scholar
  34. 34.
    Schiesser, W.E., 1994, Computational Mathematics in Engineering and Applied Science: ODE, DAEs, and PDEs. CRC Press, LondonGoogle Scholar
  35. 35.
    Kahaner, D., Moler, C. and Nash, S., 1989, Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.Y.Google Scholar
  36. 36.
    Lapidus, L., Pinder, G.F., 1982, Numerical Solution of Partial Differential Equations in Science and Engineering, John Wiley. New YorkGoogle Scholar
  37. 37.
    Ames, W.F., 1992, Numerical Methods for Partial Differential Equations, Academic Press, New York (3rd Ed.)Google Scholar
  38. 38.
    Unger, J., Kroner, A. and Marquardt, W., 1995, Computers chem. Engng. 19, 867Google Scholar
  39. 39.
    Froment, G.F., Bischoff, K.B., 1990, Chemical Reactor Analysis and Design. John Wiley, New YorkGoogle Scholar
  40. 40.
    King, J.C., 1980, Separation Processes. McGraw Hill, New York (2nd Ed.)Google Scholar
  41. 41.
    Holland, C.D. and Liapis, 1983, Computer Methods for Solving-Dynamic Separation Problems. McGraw Hill, New YorkGoogle Scholar
  42. 42.
    Bird, R.B., Stewart, W.E. and Lightfoot, E.N., 1960, Transport Phenomena. John Wiley, New YorkGoogle Scholar
  43. 43.
    Slattery, J.C., 1990, Interfacial Transport Phenomena. Springer-Verlag, HeidelbergGoogle Scholar
  44. 44.
    Taylor, R. and Krishna, R., 1993, Multicomponent Mass Transfer. Hohn Wiley, New YorkGoogle Scholar
  45. 45.
    Krylov, N.V., 1995, Introduction to the Theory of Diffusion Processes. Amercian Mathem. Soc., Providence R. I.Google Scholar
  46. 46.
    Mason, E.A. and Malinauskas, A.P., 1983, Gas Transport in Porous Media: The Dusty- Gas Model. Elsevier, AmsterdamGoogle Scholar
  47. 47.
    Rieckmann, C. and Keil, F.J. (see this volume)Google Scholar
  48. 48.
    Deuflhard, P. and Hohmann, A., 1993, Numerische Mathematik I. Walter de Gruyter, BerlinGoogle Scholar
  49. 49.
    Golub, G.H. and Van Loan, C.F., 1989, Matrix Computations. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  50. 50.
    Axelsson, O., 1994, Iterative Solution Methods. Cambridge Univ.-Press, CambridgeGoogle Scholar
  51. 51.
    Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and Van der Vorst, H., 1994, TEMPLATES for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, PhiladelphiaGoogle Scholar
  52. 52.
    Stauffer, D. and Aharony, A., 1992, Introduction to Percolation Theory. Taylor & Francis, LondonGoogle Scholar
  53. 53.
    Lohmann, T., Bock, H.G., Schloder, J.P., 1992, Ind. Eng. Chem. Res. 31, 54Google Scholar
  54. 54.
    Michelsen, M.L., 1984, Fluid Phase Equil. 16, 57Google Scholar
  55. 55.
    Michelsen, M.L., 1980, Fluid Phase Equil. 4, 1Google Scholar
  56. 56.
    Allgower, E. and Georg, K., 1980, SIAM Rev. 22, 28Google Scholar
  57. 57.
    Wayburn, T.L. and Seader, J.D., 1984, in Westerberg, A.W. and Chien, H.H. (Eds.), Proc. Conf. On Found. Computer-Aided Process Design (CACHE), p. 765Google Scholar
  58. 58.
    Kovach, J.W. and Seider, W.D., 1987, Computers Chem. Eng. 11, 593Google Scholar
  59. 59.
    Doolen, G.D. (Ed.), 1989, Lattice Gas Methods for PDEs. Addison-Wesley, New YorkGoogle Scholar
  60. 60.
    Doolen, G.D. (Ed.), 1990, Lattice Gas Methods for PDEs: Theory, Applications and Hardware. Physica D 47Google Scholar
  61. 61.
    Chen, S.; Dawson, S.P., Doolen, G.D., Janecky, D.R. and Lawniczak, A., 1995, Computers Chem. Eng. 19, 617Google Scholar
  62. 62.
    Watson, L.T., Billupps, S.C. and Morgan, A.P., 1987, ACM Trans. Math. Software 13, 281Google Scholar
  63. 63.
    Morgan, A.P., 1987, Solving Polynomial Systems using Continuation for Engineering and Scientific Problems. Prentice Hall, Englewood Cliffs.Google Scholar
  64. 64.
    Seader, J.D., Kuno, M., Lin, W.-J., Johnson, S.A., Unsworth, K. and Wiskin, J.W., 1990, Computers Chem. Eng. 14, 71Google Scholar
  65. 65.
    Kubicek, M. and Marek, M., 1983, Computational Methods in Bifurcation Theory and Dissipative Structures. Springer-Verlag, HeidelbergGoogle Scholar
  66. 66.
    Doedel, E.J., 1986, AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. Concordia University, MontrealGoogle Scholar
  67. 67.
    Holodniok, M. and Kubicek, M., 1984, J. Comput. Phys. 55, 254Google Scholar
  68. 68.
    Paloschi, J.R., 1994, Computers Chem. Eng. 18 (Suppl.), S201Google Scholar
  69. 69.
    Reinboldt, W. and Burkhardt, J,. 1983, ACM Trans. Math. Software 9, 215Google Scholar
  70. 70.
    More, J.J., 1990, in: Allgower, E.L. and Georg, K. (Eds.), Computational Solution of Nonlinear Systems of Equations. Amer. Math. Soc., p. 723Google Scholar
  71. 71.
    Patankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow. Hemisphere, New YorkGoogle Scholar
  72. 72.
    Patankar, S.V., 1988, J. Heat Transfer 110, 1037Google Scholar
  73. 73.
    Wesseling, PI, 1991, An Introduction to Multigrid Methods. John Wiley, New YorkGoogle Scholar
  74. 74.
    Bequette, B.W., 1991, Ind. Eng. Chem. Res. 30, 1391Google Scholar
  75. 75.
    ASPEN PLUS; 1988, User Guide, Aspen Technology, Cambridge, MAGoogle Scholar
  76. 76.
    Perkins, J.D., Sargent, R.W.H., 1982, AICHE Sym. Ser. 78 (No. 214), 1Google Scholar
  77. 77.
    Schuler, H. (Ed.), 1995, Prozefisimulation. VCH, WeinheimGoogle Scholar
  78. 78.
    Westerberg, A.W., Hutchinson, H.P., Motard, R.L. and Winter, P., 1979, Process flowsheeting. Cambridge University Press, CambridgeGoogle Scholar
  79. 79.
    Kroner,A., Holl, P., Marquardt, W., Gilles, E.-D., 1990, Computers Chem. Eng. 14, 1289Google Scholar
  80. 80.
    Rosen, E.M., 1980, in: Computer Applications to Chemical Engineering (Squires, S. and Reklaitis, G.V. (Eds.). ACS Monograph 124, 3Google Scholar
  81. 81.
    Petzold, L., 1982, SIAM J. Sci. Comput. 3, 367Google Scholar
  82. 82.
    Pantelides, C.G., Gritsis, D., Morison, K.R. and Sargent, R.W.H., 1988, Computers Chem. Eng. 12, 449Google Scholar
  83. 83.
    Byrne, G.D. and Ponzi, P.R., 1988, Computers Chem. Eng. 12, 377Google Scholar
  84. 84.
    Bock, H.G., Schloder, J.P. and Schulz, V.H., 1995, in [77], p. 35Google Scholar
  85. 85.
    Hindmarsh, A.C., 1980, ACM-Signum Newsletters 15, 10Google Scholar
  86. 86.
    Hindmarsh, A.C., 1983, in: Steplemen, R.S. (Ed.): Scientific Computing. North Holland, AmsterdamGoogle Scholar
  87. 87.
    Petzold, L.R., 1982, SIAM J. Sci. Stat. Comput. 3, 367Google Scholar
  88. 88.
    Deuflhard, P. Hairer, E. and Zugck, J., 1987, Numer. Math. 51, 501Google Scholar
  89. 89.
    Hairer, E., Lubich, P.C. and Roche, M., 1989, The Numerical Solution of Differential- Algebraic Systems by Runge-Kutta Methods. Springer - Verlag, HeidelbergGoogle Scholar
  90. 90.
    Caracotsios, M. and Stewart, W.E., 1995, Computers Chem. Eng. 19, 1019Google Scholar
  91. 91.
    Bachmann, R., Brail, L., Mrziglod, Th. and Pallaske, U., 1990, Computers Chem. Eng. 14, 1271Google Scholar
  92. 92.
    Mattson, S.E. and Soderlind, G., 1993, SIAM J. Sci. Comput. 14, 677Google Scholar
  93. 93.
    Pantelides, C.C., 1988, SIAM J. Sci. Stat. Comput. 9, 213Google Scholar
  94. 94.
    Parker, A.L. and Hughes, R.R., 1981, Computers Chem. Engng. 5, 123Google Scholar
  95. 95.
    Biegler, L.T. and Hughes, R.R., 1981, Chem. Eng. Prog. 77, 76Google Scholar
  96. 96.
    Biegler, L.T., 1988, Computers Chem. Engng. 12, 357Google Scholar
  97. 97.
    Schmidt, C. and Biegler, L.T., 1994, Trans IChemE 72, 382Google Scholar
  98. 98.
    Floudas, C, and Visweswaran, V., 1990, Computers Chem. Engng. 14, 1397Google Scholar
  99. 99.
    Horst, R., Pardalos, P.M. and Thoai, N.V., 1995, Introduction to Global Optimization. Kluwer Academic Publ., DordrechtGoogle Scholar
  100. 100.
    Horst, R. and Tuy, H., 1993, Global Optimization. Springer-Verlag, HeidelbergGoogle Scholar
  101. 101.
    Ryoo, H.S. and Sahinidis, N.V., 1995, Computers Chem. Engng. 19, 551Google Scholar
  102. 102.
    Luus, R., 1989, Hung. J. Ind. Chem. 17, 523Google Scholar
  103. 103.
    Hartig, F. and Keil, F. J., 1993, Hung. J. Ind. Chem. 21, 101Google Scholar
  104. 104.
    Hartig, F. and Keil, F. J., 1993, Ind. Eng. Chem. Res. 32, 424Google Scholar
  105. 105.
    Hartig, F., Keil, F. J., and Kafarov, V.V., 1996, Theoret. Found. Chem. Eng. (In press)Google Scholar
  106. 106.
    Salkin, H.M., 1975, Integer Programming. Addison-Wesley, Reading (MA )Google Scholar
  107. 107.
    Gusta, O.K. and Ravindran, V., 1985, Management Science 31, 1533Google Scholar
  108. 108.
    Geoffrion, A.M., 1972, J. Optim. Theor. Appl. 10, 237Google Scholar
  109. 109.
    Duran, M. A. and Grossmann, I.E., 1986, Math. Progr. 36, 307CrossRefGoogle Scholar
  110. 110.
    Fletcher, R. and Leyffer, S., 1994, Math. Progr. 66, 327CrossRefGoogle Scholar
  111. 111.
    Quesada, I. and Grossmann, I.E., 1992, Computers Chem. Eng. 16, 937CrossRefGoogle Scholar
  112. 112.
    Westerlund, T. and Petterson, F., 1992, A Cutting Plane Method for Solving Convex MINLP Problems. Report 92-124-A, Process Design Laboratory, Abo AkademiGoogle Scholar
  113. 113.
    Grossmann, I.E. and Kravanja, Z., 1995, Computers Chem. Engng. 19 (Suppl.), 189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Frerich J. Keil
    • 1
  1. 1.Dept. of Chemical EngineeringTechnical University of Hamburg-HamburgGermany

Personalised recommendations