Skip to main content

Morphogenesis at the Retrotransposon-Retrovirus Interface: Gypsy and Copia Families in Yeast and Drosophila

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 214))

Abstract

Long terminal repeat (LTR) retrotransposons have been identified in a wide variety of organisms including fungi (Boeke and Sandmeyer 1991), plants (Voytas and Ausubel 1988; Flavell et al. 1995; Smyth et al. 1989; Grandbastien et al. 1989), invertebrates (Springer et al. 1991; Britten 1995; Bingham and Zachar 1989), and vertebrates (Flavell and Smith 1992). Many of these LTR retrotransposons can be sorted into two superfamilies named after the prototypic Drosophila elements copia and gypsy (mdg4). The early history of the characterization of these elements has been reviewed elsewhere (Boeke and Corces 1995; Bingham and Zachar 1989). Expression of representative elements results in the formation of intracellular particles analogous to the retroviral core particle. This review will focus on morphogenesis of that particle — assembly, processing, and reverse transcription — in members of these families for which the DNA sequence has been determined in the fruit fly Drosophila and in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces Pombe. Collectively, these systems reveal tremendous diversity as well as striking similarities among the mechanisms members of these two LTR retrotransposon families and retroviruses have used to solve common morphogenetic problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SE, Mellor J, Gull K, Sim RB, Tuite MF, Kingsman SM, Kingsman AJ (1987a) The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins. Cell 49: 111–119

    PubMed  CAS  Google Scholar 

  • Adams SE, Dawson KM, Gull K, Kingsman SM, Kingsman AJ (1987b) The expression of hybrid HIV: Ty virus-like particles in yeast. Nature 329: 68–70

    Google Scholar 

  • Adams SE, Burns NR, Layton GT, Kingsman AJ (1995) Hybrid Ty virus-like particles. Int Rev Immunol 11: 133–14

    Google Scholar 

  • Arkhipova IR, Mazo AM, Cherkasova VA, Gorelova TV, Schuppe NG, llyin YV (1986) The steps of reverse transcription of Drosophila mobile dispersed genetic elements and U3-R-U5 structure of their LTRs. Cell 44: 555–563

    PubMed  CAS  Google Scholar 

  • Atwood A, Lin J-H, Levin HL (1996) The retrotransposon Tf1 assembles virus-like particles that contain excess Gag relative to integrase because of a regulated degradation process. Mol cell Biol 16: 338–346

    PubMed  CAS  Google Scholar 

  • Baker RT, Tobias JW, Varshavsky A (1992) Ubiquitin-specific proteases of Saccharomyces cerevisiae. J Biol Chem 267: 23364–23375

    PubMed  CAS  Google Scholar 

  • Barat C, Lullien V, Schatz O, Keith G, Nugeyre MT, Gruninger-Leitch F, Barre-Sinoussi F, LeGrice SF, Darlix JL (1989) HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO J 8: 3279–3285

    PubMed  CAS  Google Scholar 

  • Belcourt MF, Farabaugh PJ (1990) Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62: 339–352

    PubMed  CAS  Google Scholar 

  • Bilanchone VW, Claypool JA, Kinsey PT, Sandmeyer SB (1993) Positive and negative regulatory elements control expression of the yeast retrotransposon Ty3. Genetics 134: 685–700

    PubMed  CAS  Google Scholar 

  • Bingham PM, Zachar Z (1989) Retrotransposons and the FB transposon from Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 485–502

    Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse transcription in retrotransposons. Annu Rev Microbiol 43: 402–433

    Google Scholar 

  • Boeke JD, Sandmeyer SB (1991) Yeast transposable elements. In: Broach JR, Jones EW, Pringle J (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 193–261

    Google Scholar 

  • Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40: 491–500

    PubMed  CAS  Google Scholar 

  • Brierley C, Flavell AJ (1990) The retrotransposon copia controls the relative levels of its gene products post-transcriptionally by differential expression from its two major mRNAs. Nucleic Acid Res 18: 2947–2951

    Google Scholar 

  • Britten RJ (1995) Active gypsyfTy3 retrotransposons or retroviruses in Caenorhabditis elegans. Proc Natl Acad Sci USA 92: 599–601

    PubMed  CAS  Google Scholar 

  • Brookman JL, Stott AJ, Cheeseman PJ, Burns NR, Adams SE, Kingsman AJ, Gull K (1995) An immunological analysis of Ty1 virus-like particle structure. Virology 207: 59–67

    PubMed  CAS  Google Scholar 

  • Burns NR, Saibil HR, White NS, Pardon JF, Timmins PA, Mark S, Richardson H, Richards BM, Adams SE, Kingsman SM et al (1992) Symmetry, flexibility and permeability in the structure of yeast retrotransposon virus-like particles. EMBO J 11: 1155–1164

    PubMed  CAS  Google Scholar 

  • Chapman KB, Bystrom AS, Boeke JD (1992) Initiator methionine tRNA is essential for Ty1 transposition in yeast. Proc Natl Acad Sci USA 89: 3236–3240

    PubMed  CAS  Google Scholar 

  • Clare J, Farabaugh P (1985) Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc Natl Acad Sci USA 82: 2829–2833

    PubMed  CAS  Google Scholar 

  • Clare JJ, Belcourt M, Farabaugh PJ, (1988) Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty1 transposon. Proc Natl Acad Sci USA 85: 6816–6820

    PubMed  CAS  Google Scholar 

  • Coffin JM (1990) Retroviridae and their replication. In: Fields BN, Knipe DM (eds) Virology, 2nd edn. Raven, New York, pp 1437–1500

    Google Scholar 

  • Craig EA, Jacobsen K (1985) Mutations in cognate genes of Saccharomyces cerevisiae hsp 70 result in reduced growth rates at low temperatures. Mol Cell Biol 5: 3517–3524

    PubMed  CAS  Google Scholar 

  • Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57: 402–414

    PubMed  CAS  Google Scholar 

  • Curcio MJ, Garfinkel DJ (1991a) Regulation of retrotransposition in Saccharomyces cerevisiae. Mol Microbiol 5: 1823–1829

    PubMed  CAS  Google Scholar 

  • Curcio MJ, Garfinkel DJ (1991b) Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci USA 88: 936–940

    PubMed  CAS  Google Scholar 

  • Curcio MJ, Garfinkel DJ (1992) Posttranslational control of Ty1 retrotransposition occurs at the level of protein processing. Mol Cell Biol 12: 2813–2825

    PubMed  CAS  Google Scholar 

  • Curcio MJ, Garfinkel DJ (1994) Heterogeneous functional Ty1 elements are abundant in the Saccharomyces cerevisiae genome. Genetics 136: 1245–1259

    PubMed  CAS  Google Scholar 

  • Curcio MJ, Sanders NJ, Garfinkel DJ (1988) Transpositional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition. Mol Cell Biol 8: 3571–3581

    PubMed  CAS  Google Scholar 

  • Dinman JD, Icho T, Wickner RB (1991) A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88: 174–178

    PubMed  CAS  Google Scholar 

  • Eichinger DJ, Boeke JD (1988) The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition. Cell 54: 955–966

    PubMed  CAS  Google Scholar 

  • Eichinger DJ, Boeke JD (1990) A specific terminal structure is required for Ty1 transposition. Genes Dev 4: 324–330

    PubMed  CAS  Google Scholar 

  • Emori Y, Shiba S, Inouye I, Yuki S, Saigo K (1985) The nucleotide sequences of copia and copia-related RNA in Drosophila virus-like particles. Nature 315: 773–776

    PubMed  CAS  Google Scholar 

  • Evgen’ev MB, Corces VG, Lankenau D-H (1992) Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses. J Mol Biol 225: 917–924

    PubMed  Google Scholar 

  • Falkenthal S, Lengyel JA (1980) Structure, translation, and metabolism of the cytoplasmic copia ribonucleic acid of Drosophila melanogaster. Biochemistry 19: 5842–5850

    PubMed  CAS  Google Scholar 

  • Farabaugh PJ, Zhao H, Pande S, Vimaladithan A (1993) Translational frameshifting expresses the POL3 gene of retrotransposon Ty3 of yeast. Cell 74: 93–103

    PubMed  CAS  Google Scholar 

  • Fassbender S, Bruhl K-H, Ciriacy M, Kuck U (1994) Reverse transcriptase activity of an intron encoded polypeptide. EMBO J 13: 2075–2083

    Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 245–246

    PubMed  CAS  Google Scholar 

  • Finnegan DJ (1989) F and related elements in Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 519–529

    Google Scholar 

  • Flavell AJ (1984) Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements. Nature 310: 514–516

    PubMed  CAS  Google Scholar 

  • Flavell AJ (1992) Ty1-copia group retrotransposons and the evolution of retroelements in the eukaryotes. Genetica 86: 203–214

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Ish-Horowicz D (1981) Extrachromosomal circular copies of the eukaryotic transposable element copia in cultured Drosophila cells. Nature 292: 591–595

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Ish-Horowicz D (1983) The origin of extrachromosomal circular copia elements. Cell 34: 415–419

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Smith DB (1992) A Ty1-copia group retrotransposon sequence in a vertebrate. Mol Gen Genet 233: 322–326

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Ruby SW, Toole JJ, Roberts BE, Rubin GM (1980) Translation and developmental regulation of RNA encoded by the eukaryotic transposable element copia. Proc Natl Acad Sci USA 77: 7107–7111

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartly R, Kumar A (1995) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 94: 3639–3644

    Google Scholar 

  • Friesen PD, Nissen MS (1990) Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol Cell Biol 10: 3067–3077

    PubMed  CAS  Google Scholar 

  • Fuetterer J, Hohn T (1987) Involvement of nucleocapsids in reverse transcription: a general phenomenon? Trends Biochem Res 12: 92–95

    Google Scholar 

  • Fulton AM, Mellor J, Dobson MJ, Chester J, Warmington JR, Indge KJ, Oliver SG, de la PP, Wilson W, Kingsman AJ et al (1985) Variants within the yeast Ty sequence family encode a class of structurally conserved proteins. Nucleic Acids Res 13: 4097–4112

    PubMed  CAS  Google Scholar 

  • Furuichi T, Inouye S, Inouye M (1987) Biosynthesis and structure of stable branched RNA covalently linked to the 5’ end of multicopy single-stranded DNA of Stigmatella auranticaca. Cell 48: 55–62

    PubMed  Google Scholar 

  • Gabriel A, Boeke JD (1991) Reverse transcriptase encoded by a retrotransposon from the trypanosomatid Crithidia fasciculata. Proc Natl Acad Sci USA 88: 9794–9798

    PubMed  CAS  Google Scholar 

  • Garfinkel DJ, Boeke JD, Fink GR (1985) Ty element transposition: reverse transcriptase and virus-like particles. Cell 42: 507–517

    PubMed  CAS  Google Scholar 

  • Garfinkel DJ, Hedge AM, Youngren SD, Copeland TD (1991) Proteolytic processing of pol-TYB proteins from the yeast retrotransposon Ty1. J Virol 65: 4573–4581

    PubMed  CAS  Google Scholar 

  • Grandbastien M-A, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380

    PubMed  CAS  Google Scholar 

  • Hansen LJ, Sandmeyer SB (1990) Characterization of a transpositionally active Ty3 element and identification of the Ty3 integrase protein. J Virol 64: 2599–2607

    PubMed  CAS  Google Scholar 

  • Hansen LJ, Chalker DL, Sandmeyer SB (1988) Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol Cell Biol 8: 5245–5256

    PubMed  CAS  Google Scholar 

  • Hansen LJ, Chalker DL, Orlinsky KJ, Sandmeyer SB (1992) Ty3 GAG3 and POL3 genes encode the components of intracellular particles. J Virol 66: 1414–1424

    PubMed  CAS  Google Scholar 

  • Hauber J, Nelböck-Hochstetter P, Feldmann H (1985) Nucleotide sequence and characteristics of a Ty element from yeast. Nucleic Acids Res 13: 2745–2758

    PubMed  CAS  Google Scholar 

  • Hu JC, Dahlberg JE (1983) Structural features required for the binding of tRNATrp to avian myeloblastosis virus reverse transcriptase. Nucleic Acids Res 11: 4823–4833

    PubMed  CAS  Google Scholar 

  • Inouye S, Yuki S, Saigo K (1986) Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur J Biochem 154: 417–425

    PubMed  CAS  Google Scholar 

  • Jacks T (1989) Translational suppression in gene expression in retroviruses and retrotransposons. In: Swanstrom R, Vogt PK (eds) Retroviruses. Strategies of replication. Springer, Berlin Heidelberg New York, pp 93–124 (Current topics in microbiology and immunology, vol 157 )

    Google Scholar 

  • Jacks T, Townsley K, Varmus HE, Majors J (1987) Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins. Proc Natl Acad Sei USA 84: 4298–4302

    CAS  Google Scholar 

  • Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE (1988) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331: 280–283

    PubMed  CAS  Google Scholar 

  • Janetzky B, Lehle L (1992) Ty4, a new retrotransposon from Saccharomyces cerevisiae, flanked by tau-elements. J Biol Chem 267: 19798–19805

    PubMed  CAS  Google Scholar 

  • Kawakami K, Pande S, Faiola B, Moore DP, Boeke JD, Farabaugh PJ, Strathern JN, Nakamura Y, Garfinkel DJ (1993) A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotranspositon in Saccharomyces cerevisiae. Genetics 135: 309–320

    PubMed  CAS  Google Scholar 

  • Keeney JB, Chapman KB, Lauermann V, Voytas DF, Ästrom SU, von Pawel-Rammingen U, Byström A, Boeke JD (1995) Multiple molecular determinants for retrotransposition in a primer tRNA. Mol Cell Biol 15: 217–226

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Ando Y, Shiba T (1986) Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila. Nature 323: 824–826

    PubMed  CAS  Google Scholar 

  • Kim A, Terzian C, Santamaria P, Pelisson A, Prud’homme N, Bucheton A (1994) Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sei USA 91: 1285–1289

    CAS  Google Scholar 

  • Kinsey P, Sandmeyer S (1995) Ty3 transposes in mating populations of yeast: a novel transposition assay for Ty3. Genetics 139: 81–94

    PubMed  CAS  Google Scholar 

  • Kirchner J, Sandmeyer S (1993) Proteolytic processing of Ty3 proteins is required for transposition. J Virol 67: 19–28

    PubMed  CAS  Google Scholar 

  • Kirchner J, Sandmeyer SB (1996) Ty3 integrase cleaves a dinucleotide from the 3’ termini of Ty3 DNA and may have a role in reverse transcription: analysis of integrase mutations. J Virol (in press)

    Google Scholar 

  • Kirchner J, Sandmeyer SB, Forrest DB (1992) Transposition of Ty3 GAG3-POL3 fusion mutant is limited by availability of capsid protein. J Virol 66: 6081–6092

    PubMed  CAS  Google Scholar 

  • Lankenau DH, Huijser P, Jansen E, Miedema K, Hennig W (1988) Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J Mol Biol 204: 233–246

    PubMed  CAS  Google Scholar 

  • Lauermann V, Boeke JD (1994) The primer tRNA sequence is not inherited during Ty1 transposition. Proc Natl Acad Sei USA 91: 9847–9851

    CAS  Google Scholar 

  • Leis J, Baltimore D, Bishop JM, Coffin J, Fleissner E, Goff SP, Oroszlan S, Robinson H, Skalka AM, Temin HM et al. (1988) Standardized and simplified nomenclature for proteins common to all retroviruses. J Virol 62: 1808–1809

    PubMed  CAS  Google Scholar 

  • Levin HL (1995) A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol Cell Biol 15: 3310–3317

    PubMed  CAS  Google Scholar 

  • Levin HL, Boeke JD (1992) Demonstration of retrotransposition of the Tf 1 element in fission yeast. EMBO J 11: 1145–1153

    Google Scholar 

  • Levin HL, Weaver DC, Boeke JD (1990) Two related families of retrotransposons from Schizosaccharomyces pombe. Mol Cell Biol 10: 6791–6798

    PubMed  CAS  Google Scholar 

  • Levin HL, Weaver DC, Boeke JD (1993) Novel gene expression mechanism in a fission yeast retroelement: Tf1 proteins are derived from a single primary translation product. EMBO J 12: 4885–4895

    Google Scholar 

  • Mammano F, hagen A, Hoglund S, Göttlinger HG (1994) Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis. J Virol 68: 4927–4936

    PubMed  CAS  Google Scholar 

  • Marlor RL, Parkhurst SM, Corces VG (1986) The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol 6: 1129–1134

    PubMed  CAS  Google Scholar 

  • Mathias SL, Scott AF, Kazazian Jr, HH, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254: 1808–1810

    PubMed  CAS  Google Scholar 

  • McHale MT, Roberts IN, Noble SM, Beaumont C, Whitehead MP, Seth D, Oliver RP (1992) CFT-I: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet 233: 337–347

    PubMed  CAS  Google Scholar 

  • Mellor J, Fulton AM, Dobson MJ, Roberts NA, Wilson W, Kingsman AJ, Kingsman SM (1985a) The Ty transposon of Saccharomyces cerevisiae determines the synthesis of at least three proteins. Nucleic Acids Res 13: 6249–6263

    PubMed  CAS  Google Scholar 

  • Mellor J, Malim MH, Gull K, Tuite MF, McCready S, Dibbayawan T, Kingsman SM, Kingsman AJ (1985b) Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature 318: 583–586

    PubMed  CAS  Google Scholar 

  • Menees TM, Sandmeyer SB (1994) Transposition of the yeast retroviruslike element Ty3 is dependent on the cell cycle. Mol Cell Biol 14: 8229–8240

    PubMed  CAS  Google Scholar 

  • Menees TM, Sandmeyer SB (1996) Ubiquitination and inhibition of yeast retroviruslike element Ty3 particle formation. Proc Natl Acad Sei USA (in press)

    Google Scholar 

  • Miller K, Rosenbaum J, Zbrzezna V, Pogo AO (1995) The nucleotide sequence of Drosophila melanogaster copia-specific 2.1 kb mRNA. Nucleic Acids Res 17: 2134

    Google Scholar 

  • Miyake T, Mae N, Shiba T, Kondo S (1987) Production of virus-like particles by the transposable genetic element, copia, of Drosophila melanogaster. Mol Gen Genet 207: 29–37

    PubMed  CAS  Google Scholar 

  • Mount SM, Rubin GM (1985) Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol 5: 1630–1638

    PubMed  CAS  Google Scholar 

  • Müller F, Brühl KH, Freidel K, Kowallik KV, Ciriacy M (1987) Processing of Ty1 proteins and formation of Ty1 virus-like particles in Saccharomyces cerevisiae. Mol Gen Genet 207: 421–429

    PubMed  Google Scholar 

  • Müller F, Laufer W, Pott U, Ciriacy M (1991) Characterization of products of Ty1 -mediated reverse transcription in Saccharomyces cerevisiae. Mol Gen Genet 226: 145–153

    PubMed  Google Scholar 

  • Natsoulis G, Boeke JD (1991) New antiviral strategy using capsid-nuclease fusion proteins. Nature 352: 632–635

    PubMed  CAS  Google Scholar 

  • Natsoulis G, Seshaiah P, Federspiel MJ, Rein A, Hughes SH, Boeke JD (1995) Targeting of a nuclease to murine leukemia virus capsids inhibits viral multiplication. Proc Natl Acad Sei USA 92: 364–368

    CAS  Google Scholar 

  • Oliver SG et al (1992) The complete DNA sequence of yeast chromosome III. Nature 357: 38–46

    PubMed  CAS  Google Scholar 

  • Orlinsky KJ, Sandmeyer SB (1994) The Cys-His motif of Ty3 NC can be contributed by Gag3 or Gag3-Pol3 polyproteins. J Virol 68: 4152–4166

    PubMed  CAS  Google Scholar 

  • Orlinsky KJ, Gu J, Hoyt M, Sandmeyer SB, Menees TM (1996) Mutations in the Ty3 major homology region affect multiple steps in Ty3 retrotransposition. J Virol (in press)

    Google Scholar 

  • Paquin CE, Williamson VM (1988) Effect of temperature on Ty transposition. Ban Rpt 30: 235–243

    CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437–496

    PubMed  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp 104. Nature 372: 475–478

    PubMed  CAS  Google Scholar 

  • Pelisson A, Song SU, Prud’homme N, Smith PA, Bucheton A, Corces VG (1994) Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J 13: 4401–4411

    Google Scholar 

  • Plesset J, Palm C, McLaughlin CS (1982) Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Bioc Biophy Res Comm 108: 1340–1345

    CAS  Google Scholar 

  • Pochart P, Agoutin B, Rousset S, Chanet R, Doroszkiewicz V, Heyman T (1993a) Biochemical and electron microscope analyses of the DNA reverse transcripts present in the virus-like particles of the yeast transposon Ty1. Identification of a second origin of Ty1 DNA plus strand synthesis. Nucleic Acids Res 21: 3513–3520

    PubMed  CAS  Google Scholar 

  • Pochart P, Agoutin B, Fix C, Keith G, Heyman T (1993b) A very poorly expressed tRNASer is highly concentrated together with replication primer initiator tRNAMet in the yeast Ty1 virus-like particles. Nucleic Acids Res 21: 1517–1521

    Google Scholar 

  • Saigo K, Kugimiya W, Matsuo Y, Inouye S, Yoshioka K, Yuki S (1984) Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature 312: 659–661

    PubMed  CAS  Google Scholar 

  • Scheinker VS, Lozovskaya ER, Bishop JG, Corces VG, Evgen’ev MB (1990) A long terminal repeatcontaining retrotransposon is mobilized during hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci USA 87: 9615–9619

    PubMed  CAS  Google Scholar 

  • Sharon G, Burkett TJ, Garfinkel DJ, (1994) Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol Cell Biol 14: 6540–6541

    PubMed  CAS  Google Scholar 

  • Shiba T, Saigo K (1983) Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogaster. Nature 302: 119–124

    PubMed  CAS  Google Scholar 

  • Smyth DR, Kalitsis P, Joseph JL, Sentry JW (1989) Plant retrotansposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci USA 86: 5015–5019

    PubMed  CAS  Google Scholar 

  • Song Su, Gerasimova T, Kurkulos M, Boeke JD, Corces V (1994) An Env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev 8: 2046–2057

    PubMed  CAS  Google Scholar 

  • Springer MS, Britten RJ (1993) Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol Biol Evol 10: 1370–1379

    PubMed  CAS  Google Scholar 

  • Springer MS, Davidson EH, Britten RJ (1991) Retroviral-like element in a marine invertebrate. Proc Natl Acad Sci USA 88: 8401–8404

    PubMed  CAS  Google Scholar 

  • Stone DE, Craig EA (1990) Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol Cell Biol 10: 1622–1632

    PubMed  CAS  Google Scholar 

  • Strambio-de-Castillia C, Hunter E (1992) Mutational analysis of the major homology region of Mason-Pfizer monkey virus by use of saturation mutagenesis. J Virol 66: 7021–7032

    PubMed  CAS  Google Scholar 

  • Stucka R, Lochmuller H, Feldmann H (1989) Ty4, a novel low-copy number element in Saccharomyces cerevisiae: one copy is located in a cluster of Ty elements and tRNA genes. Nucleic Acids Res 17: 4993–5001

    PubMed  CAS  Google Scholar 

  • Syomin BV, Kandror KV, Semakin AB, Tsuprun VL, Stepanov AS (1993) Presence of the gypsy (MDG4) retrotransposon in extracellular virus-like particles. FEBS Lett 323: 285–288

    PubMed  CAS  Google Scholar 

  • Tanda S, Shrimpton AE, Chueh LL, Itayama H, Matsubayashi H, Saigo K, Tobari YN, Langley CH (1988) Retrovirus-like features and site specific insertions of a transposable element, torn, in Drosophila ananassae. Mol Gen Genet 214: 405–411

    Google Scholar 

  • Tanda S, Mullor J, Corces VG (1994) The Drosophila torn retrotransposon encodes an envelope protein. Mol Cell Biol 14: 5392–5401

    PubMed  CAS  Google Scholar 

  • Tavis JE, Perri S, Ganem D (1994) Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer. J Virol 68: 3536–3543

    PubMed  CAS  Google Scholar 

  • Tchenio T, Heidmann T (1991) Defective retroviruses can disperse in the human genome by intracellular transposition. J Virol 65: 2113–2118

    PubMed  CAS  Google Scholar 

  • Telesnitsky A, Goff SP (1993) Strong-stop strand transfer during reverse transcription. In: Skalka AM, Goff SP (eds) Reverse transcriptase. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 49–83

    Google Scholar 

  • Vimaladithan A, Farabaugh PJ (1994) Special peptidyl-tRNA molecules can promote transitional frameshifting without slippage. Mol Cell Biol 14: 8107–8116

    PubMed  CAS  Google Scholar 

  • Voytas DF, Ausubel FM (1988) A copia-like transposable element family in Arabidopsis thaliana. Nature 336: 242–244

    PubMed  CAS  Google Scholar 

  • Voytas DF, Boeke JD (1992) Yeast retrotransposon revealed. Nature 358: 717

    PubMed  CAS  Google Scholar 

  • Voytas DF, Boeke JD (1993) Yeast retrotransposons and tRNAs. TIGS 9: 421–427

    Google Scholar 

  • Warmington JR, Waring RB, Newlon CS, Indge KJ, Oliver SG (1985) Nucleotide sequence characterization of Ty1-17, a class II transposon from yeast. Nucleic Acids Res 13: 6679–6693

    PubMed  CAS  Google Scholar 

  • Wills JW, Craven RC (1991) Form, function, and use of retroviral gag proteins (editorial). AIDS 5: 639–654

    PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362

    PubMed  CAS  Google Scholar 

  • Xu H, Boeke JD (1990a) Host genes that influence transposition in yeast: the abundance of a rare tRNA regulates Ty1 transposition frequency. Proc Natl Acad Sci USA 87: 8360–8364

    PubMed  CAS  Google Scholar 

  • Xu H, Boeke JD (1990b) Localization of sequences required in cis for yeast Ty1 element transposition near the long terminal repeats: analysis of mini-Ty1 elements. Mol Cell Biol 10: 2695–2702

    PubMed  CAS  Google Scholar 

  • Xu H, Boeke JD (1991) Inhibition of Ty1 transposition by mating pheromones in Saccharomyces cerevisiae. Mol Cell Biol 11: 2736–2743

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Honma H, Zushi M, Kondo S, Togashi S, Miyake T, Shiba T (1990) Virus-like particle formation of Drosophila copia through autocatalytic processing. EMBO J 9: 535–541

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Fujita A, Kondo S, Miyake T, Sakaki Y, Shiba T (1992) Production of a unique multi-lamella structure in the nuclei of yeast expressing Drosophila copia gag precursor. FEBS Lett 302: 5–7

    PubMed  CAS  Google Scholar 

  • Youngren SD, Boeke JD, Sanders NJ, Garfinkel DJ (1988) Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol Cell Biol 8: 1421–1431

    Google Scholar 

  • Yuki S, Inouye S, Ishimaru S, Saigo K (1986) Nucleotide sequence characterization of a Drosophila retrotransposon, 412. Eur J Biochem 158: 403–410

    PubMed  CAS  Google Scholar 

  • Zou S, Wright DA, Voytas DF (1995) The Saccharomyces Ty5 retrotransposon family is associated with origins of DNA replication at the telomeres and the silent mating locus HMR. Proc Natl Acad Sci USA 92: 920–924

    PubMed  CAS  Google Scholar 

  • Zou S, Ke N, Kim JM, Voytas DF (1996) The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev 10: 634–645

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sandmeyer, S.B., Menees, T.M. (1996). Morphogenesis at the Retrotransposon-Retrovirus Interface: Gypsy and Copia Families in Yeast and Drosophila . In: Kräusslich, HG. (eds) Morphogenesis and Maturation of Retroviruses. Current Topics in Microbiology and Immunology, vol 214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80145-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80145-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80147-1

  • Online ISBN: 978-3-642-80145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics