Skip to main content

Role of Auxiliary Proteins in Retroviral Morphogenesis

  • Chapter
Morphogenesis and Maturation of Retroviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 214))

Abstract

Though both the oncoviruses and the lentiviruses belong to the Retroviridae family, the lentiviral subfamily is comparatively complex both from the point of view of the number of viral proteins encoded by these viruses and in the regulation of their expression. In addition to the gag, pol, and env open reading frames (ORFs) present in all retroviruses, lentiviral genomes also contain novel ORFs generally not found in prototypic retroviruses. These ORFs code for a variety of auxiliary proteins which account for the tight and often intricate regulation of gene expression observed in lentiviruses. Auxiliary protein involvement in viral replication has been particularly well characterized in the most extensively studied member of the lentiviral subfamily, the human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immune deficiency syndrome (AIDS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrigo SJ, Chen IS (1991) Rev is necessary for translation but not the cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 5: 808–819

    Article  PubMed  CAS  Google Scholar 

  • Arya SK, Gallo RC (1986) Three novel genes of human T-lymphotropic virus type III: immune reactivity of their products with sera from acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 83: 2209–2213

    Article  PubMed  CAS  Google Scholar 

  • Blanc D, Patience C, Schulz TF, Weiss R, Spire B (1993) Transcomplementation of VIF” HIV-1 mutants in CEM cells suggests that Vif affects late steps of the viral life cycle. Virology 193: 186–192

    Article  PubMed  CAS  Google Scholar 

  • Bour S, Boulerice F, Wainberg MA (1991) Inhibition of gp160 and CD4 maturation in U937 cells after both defective and productive infections by human immunodeficiency virus type 1. J Virol 65: 6387–6396

    PubMed  CAS  Google Scholar 

  • Bour S, Schubert U, Strebel K (1995) The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol 69: 1510–1520

    PubMed  CAS  Google Scholar 

  • Bowerman B, Brown PO, Bishop JM, Varmus HE (1989) A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 3: 469–478

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky Ml, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365: 666–669

    Article  PubMed  CAS  Google Scholar 

  • Buonocore L, Turi TG, Crise B, Rose JK (1994) Stimulation of heterologous protein degradation by the Vpu protein of HIV-1 requires the transmembrane and cytoplasmic domains of CD4. Virology 204: 482–486

    Article  PubMed  CAS  Google Scholar 

  • Checroune F, Yao XJ, Gottlinger HG, Bergeron D, Cohen EA (1995) Incorporation of Vpr into human immunodeficiency virus type 1: role of conserved regions within the p6 domain of Pr559ag. J AIDS Hum Retroviral 10: 1–7

    CAS  Google Scholar 

  • Chen MY, Maldarelli F, Karczewski MK, Willey RL, Strebel K (1993) Human immunodeficiency type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity. J Virol 67: 3877–3884

    PubMed  CAS  Google Scholar 

  • Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA (1988) Identification of a protein encoded by the vpu gene of HIV-1. Nature 334: 532–534

    Article  PubMed  CAS  Google Scholar 

  • Cohen EA, Terwilliger EF, Jalinoos Y, Proulx J, Sodroski JG, Haseltine WA (1990b) Identification of HIV-1 Vpr product and function. J Acquir Immune Defic Syndr 3: 11–18

    PubMed  CAS  Google Scholar 

  • Connor Rl, Chen BK, Choe S, Landau NR (1995) Vpr is required for efficient replication of human immunodeficiency virus type 1 in mononuclear phagocytes. Virology 206: 935–944

    Article  PubMed  CAS  Google Scholar 

  • Crise B, Buonocore L, Rose JK (1990) CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus envelope glycoprotein precursor. J Virol 64: 5585–5593

    PubMed  CAS  Google Scholar 

  • Cullen BR (1992) Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev 56: 375–394

    PubMed  CAS  Google Scholar 

  • DesGroseillers L, Jolicoeur P (1983) Physical mapping of the Fv-1 tropism host range determinant of Balb/c murine leukemia viruses. J Virol 48: 685–696

    Google Scholar 

  • Fan L, Peden K (1992) Cell-free transmission of Vif mutants of HIV-1. Virology 190: 19–29

    Article  PubMed  CAS  Google Scholar 

  • Fisher AG, Ensoli B, Ivanoff L, Chamberlain M, Petteway S, Ratner L, Gallo RC, Wong-Staal F (1987) The sor gene of HIV-1 is required for efficient virus transmission in vitro Science 237: 888–893

    CAS  Google Scholar 

  • Franke EK, Yuan HEH, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions Nature 372: 359–362

    CAS  Google Scholar 

  • Friborg J, Ladha A, Göttlinger H, Haseltine WA, Cohen EA (1995) Functional analysis of the phosphorylation sites on the human immunodeficiency virus type 1 Vpu protein. J AIDS and Hum Retrovirol 8: 10–22

    CAS  Google Scholar 

  • Gabuzda DH, Lawrence K, Langhoff E, Terwilliger E, Dorfman T, Haseltine WA, Sodroski J (1992) Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 66: 6489–6495

    PubMed  CAS  Google Scholar 

  • Gabuzda DH, Li H, Lawrence K, Vasir BS, Crawford K, Langhoff E (1994) Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocytes/macrophages. J Acquir Immune Defic Syndr 7: 908–915

    PubMed  CAS  Google Scholar 

  • Garrett ED, Tiley LS, Cullen BR (1991) Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol 65: 1653–1657

    CAS  Google Scholar 

  • Geraghty RJ, Panganiban AT (1993) Human immunodeficiency type 1 Vpu has a CD4” and an envelope glycoprotein-independent function. J Virol 67: 4190–4194

    PubMed  CAS  Google Scholar 

  • Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, and De Wilde M (1989) Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirusinfected insect cells. Cell 59: 103–112

    CAS  Google Scholar 

  • Goncalves J, Jallepalli P, Gabuzda DH (1994) Subcellular localization of the Vif protein of human immunodeficiency virus type 1. J Virol 68: 704–712

    PubMed  CAS  Google Scholar 

  • Göttlinger HG, Dorfman T, Cohen EA, Haseltine WA (1993) Human immunodeficiency virus type 1 Vpu enhances the production of capsids from widely divergent retroviruses. Proc Natl Acad Sei USA 90: 7381–7385

    Article  Google Scholar 

  • Guy B, Geist M, Dott K, Spehner D, Kieny MP, Lecocq JP (1991) A specific inhibitor of cysteine proteases impairs a Vif-dependent modification of human immunodeficiency virus type 1 Env protein. J Virol 65: 1325–1331

    PubMed  CAS  Google Scholar 

  • Hattori N, Michaels F, Fargnoli K, Marcon L, Gallo RC, Franchini G (1990) The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human

    Google Scholar 

  • macrophages. Proc Natl Acad Sei USA 87: 8080–8084

    Google Scholar 

  • Heinzinger NK, Bukrinsky Ml, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sei USA 91: 7311–7315

    Article  CAS  Google Scholar 

  • Henderson LE, Sowder RC, Copeland TD, Benveniste RE, Oroszlan S (1988) Isolation and characterization of a novel protein (X-orf product) from SIV and HIV-2. Science 241: 199–201

    Article  PubMed  CAS  Google Scholar 

  • Höglund S, Öhagen A, Lawrence K, Gabuzda D (1994) Role of vif during packing of the core of HIV- 1. Virology 201: 349–355

    Article  PubMed  Google Scholar 

  • Hopkins N, Schindler J, Hynes R (1977) Six NB-tropic murine leukemia viruses derived from a Btropic virus of Balb/c have altered P30. J Virol 21: 309–318

    PubMed  CAS  Google Scholar 

  • Horton R, Spearman P, Ratner L (1994) HIV-2 viral protein X associates with the Gag p27 capsid protein. Virology 199: 453–457

    Article  PubMed  CAS  Google Scholar 

  • Huet T, Cheynier R, Meyerhans A (1990) Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345: 356–359

    Article  PubMed  CAS  Google Scholar 

  • Hunter E (1994) Macromolecular interactions in the assembly of HIV and other retroviruses. Semin Virol 5: 71–83

    Article  CAS  Google Scholar 

  • Jabbar MA, Nayak DP (1990) Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope glycoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane. J Virol 64: 6297–6304

    PubMed  CAS  Google Scholar 

  • Kan NC, Franchini G, Wong-Staal F, DuBois GC, Robey WG, Lautenberger JA, Papas TS (1986) Identification of HTLV-III/LAV sor gene product and detection of antibodies in human sera. Science 231: 1553–1555

    Article  PubMed  CAS  Google Scholar 

  • Kappes JC, Conway JA, Lee SW, Shaw GM, Hahn BH (1991) Human immunodeficiency virus type 2 Vpx protein augments viral infectivity. Virology 184: 197–209

    Article  PubMed  CAS  Google Scholar 

  • Kappes JC, Parkin JS, Conway JA, Kim J, Brouillette CG, Shaw GM, Hahn BH (1993) Intracellular transport and virion incorporation of Vpx requires interaction with other virus type-specific components. Virology 193: 222–233

    Article  PubMed  CAS  Google Scholar 

  • Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM (1990) The human immunodeficiency virus type 1 specific protein Vpu is required for efficient virus maturation and release. J Virol 64: 621–629

    PubMed  CAS  Google Scholar 

  • Kondo E, Mammano F, Cohen EA, Göttlinger HG (1995) The p69a9 domain of human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into heterologous viral particles. J Virol 69: 2759–2764

    PubMed  CAS  Google Scholar 

  • Lang SM, Weeger M, Stahl-Hennig C, Coulibaly C, Hunsmann G, Müller J, Müller-Hermelink H, Fuchs D, Wächter H, Daniel MM, Desrosiers RC, Fleckenstein B (1993) Importance of Vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67: 902–912

    PubMed  CAS  Google Scholar 

  • Lava I lee C, Yao XY, Ladha A, Göttlinger H, Haseltine WA, Cohen EA (1994) Requirement of the Pr55 Gag precursor for incorporation of Vpr product into human immunodeficiency virus type 1 viral particles. J Virol 68: 1926–1934

    Google Scholar 

  • Lee TH, Coligan JE, Allan JS, McLane MF, Groopman JE, Essex M (1986) A new HTLV-III/LAV protein encoded by a gene found in cytopathic retroviruses. Science 231: 1546–1549

    Article  PubMed  CAS  Google Scholar 

  • Lenburg ME, Landau NR (1993) Vpu induced degradation of CD4: requirement for specific amino acid residues in the cytoplasmic domain of CD4. J Virol 67: 7238–7245

    PubMed  CAS  Google Scholar 

  • Levy DN, Fernandes LS, Williams WV, Weiner DB (1993) Induction of cell differentiation by human immunodeficiency virus 1 Vpr. Cell 72: 541–550

    Article  PubMed  CAS  Google Scholar 

  • Levy DN, Refaeli Y, MacGregor RR, Weiner DB (1994) Serum Vpr regulates production, infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sei USA 91: 10873–10877

    Article  CAS  Google Scholar 

  • Levy ND, Refaeli Y, Weiner DB (1995) Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J Virol 69: 1243–1252

    PubMed  CAS  Google Scholar 

  • Lewis PL, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68: 510–516

    PubMed  CAS  Google Scholar 

  • Liska V, Spehner D, Mehtali M, Schmitt D, Kirn A, Aubertin AM (1994) Localization of viral protein X in simian immunodeficiency virus macaque strain and analysis of its packaging requirement. J Gen Virol 75: 2955–2962

    Article  PubMed  CAS  Google Scholar 

  • Lu YL, Spearman P, Ratner L (1993) Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 67: 6542–6550

    PubMed  CAS  Google Scholar 

  • Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73: 1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Ma XY, Sova P, Chao W, Volsky DJ (1994) Cysteine residues in the Vif protein of human immunodeficiency virus type 1 are essential for viral infectivity. J Virol 68: 1714–1720

    PubMed  CAS  Google Scholar 

  • Mahalingam S, Khan SA, Jabbar MA, Monken CE, Collman RG, Srinivasan A (1995) Identification of residues in the N-terminal acidic domain of HIV-1 Vpr essential for virion incorporation. Virology 207: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Maldarelli F, Chen MY, Willey RL, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J Virol 67: 5056–5061

    PubMed  CAS  Google Scholar 

  • Michaels FH, Hattori N, Gallo RC, Franchini G (1993) The human immunodeficiency virus type 1 (HIV-1) Vif protein is located in the cytoplasm of infected cells and its effect on viral replication is equivalent in HIV-2. AIDS Res Hum Retroviruses 9: 1025–1030

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Shibata R, Kiyomasu T, Higuchi I, Kishida Y, Ishimoto A, Adachi A (1989) Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol 63: 4110–4114

    PubMed  CAS  Google Scholar 

  • Park IW, Myrick K, Sodroski J (1994) Effects of vif mutations on cell-free infectivity and replication of simian immunodeficiency virus. J Acquir Immune Defic Syndr 7: 1228–1236

    PubMed  CAS  Google Scholar 

  • Paxton W, Connor Rl, Landau NR (1993) Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J Virol 67: 7229–7237

    PubMed  CAS  Google Scholar 

  • Raja NU, Vincent MJ, Jabbar MA (1994) Vpu-mediated proteolysis of gp160/CD4 chimeric envelope glycoproteins in the endoplasmic reticulum: requirement of both the anchor and cytoplasmic domains of CD4. Virology 204: 357–366

    Article  PubMed  CAS  Google Scholar 

  • Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12: 2099–2108

    Google Scholar 

  • Rogel ME, Wu LI, Emerman M (1995) The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J Virol 69: 882–888

    PubMed  CAS  Google Scholar 

  • Rosenwirth B, Billich A, Datema R, Donatsch P, Hammerschmid F, Harrison R, Hiestand P, Jaksche H, Mayer P, Peichl P, Quesniaux V, Schatz F, Schuurman HJ, Traber R, Wenger R, Wolff B, Zenke G, Zurini M (1994) Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog. Antimicrob Agents Chemother 38: 1763–1772

    PubMed  CAS  Google Scholar 

  • Sakai K, Ma X, Gordienko I, Volsky D (1991) Recombinational analysis of a natural noncytopathic human immunodeficiency virus type 1 (HIV-1) isolate: role of the vif gene in HIV-1 infection

    Google Scholar 

  • kinetics and cytopathicity. J Virol 65: 5765–5773

    Google Scholar 

  • Sakai H, Shibata R, Sakuragi Jl, Sakuragi S, Kawamura M, Adachi A (1993) Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. J Virol 67: 1663–1666

    PubMed  CAS  Google Scholar 

  • Schreiber SL (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251: 283–287

    Article  PubMed  CAS  Google Scholar 

  • Schubert U, Schneider T, Henklein P, Hoffmann K, Berthold E, Hauser H, Pauli G, Porstmann T (1992) Human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase II. Eur J Biochem 204: 875–883

    Article  PubMed  CAS  Google Scholar 

  • Schubert U, Strebel K (1994) Differential activities of the human immunodeficiency virus type 1 encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J Virol 68: 2260–2271

    PubMed  CAS  Google Scholar 

  • Schwartz S, Felber BK, Fenyö EM, Pavlakis GN (1990) Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64: 5448–5456

    Google Scholar 

  • Schwartz S, Felber BK, Pavlakis GN (1991) Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is Rev-dependent and regulated by splicing. Virology 183: 677–686

    Google Scholar 

  • Sodroski J, Goh WC, Rosen C, Tartar A, Porteteile D, Burny A, Haseltine W (1986) Replicative and cytopathic potential of HTLV-lll/LAV with sor gene deletions. Science 231: 1549–1553

    Article  PubMed  CAS  Google Scholar 

  • Sova P, Volsky DJ (1993) Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J Virol 67: 6322–6326

    PubMed  CAS  Google Scholar 

  • Steinkasserer A, Harrison R, Billich A, Hammerschmid F, Werner G, Wolff B, Peichl P, Palfi G, Schnitzel W, Mlynar E, Rosenwirth B (1995) Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication. J Virol 69: 814–824

    PubMed  CAS  Google Scholar 

  • Strebel K, Daugherty D, Clouse K, Cohen D, Folks T, Martin MA (1987) The HIV ‘A ’ (sor) gene product is essential for virus infectivity. Nature 328: 728–730

    Article  PubMed  CAS  Google Scholar 

  • Strebel K, Klimkait T, Martin MA (1988) A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241: 1221–1223

    Article  PubMed  CAS  Google Scholar 

  • Strebel K, Klimkait T, Maldarelli F, Martin MA (1989) Molecular and biochemical analyses of human immunodeficiency virus type 1 Vpu protein. J Virol 63: 3784–3791

    PubMed  CAS  Google Scholar 

  • Subbramanian RA, Cohen EA (1994) Molecular biology of the human immunodeficiency virus accessory proteins. J Virol 68: 6831–6835

    PubMed  CAS  Google Scholar 

  • Terwilliger EF, Cohen EA, Lu YC, Sodroski JG, Haseltine WA (1989) Functional role of human immunodeficiency virus type 1 vpu. Proc Natl Acad Sei USA 86: 5163–5167

    Article  CAS  Google Scholar 

  • Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Göttlinger HG (1994) Functional association of cyclophilin A with HIV-1 virions. Nature 372: 363–365

    Article  PubMed  CAS  Google Scholar 

  • Tristem M, Marshall C, Karpas A, Petrik J, Hill F (1990) Origin of vpx in lentiviruses. Nature 347: 341–342

    Article  PubMed  CAS  Google Scholar 

  • Tristem M, Marshall C, Karpas A, Hill F (1992) Evolution of the primate lentiviruses: evidence from vpx and vpr. EMBO J 11: 3405–3412

    Google Scholar 

  • Vincent MJ, Raja NU, Jabbar MA (1993) Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domain of CD4: role of the cytoplasmic domain in vpu-induced degradation in the endoplasmic reticulum. J Virol 67: 5538–5549

    PubMed  CAS  Google Scholar 

  • Walsh CT, Zydowsky LD, McKeon FD (1992) Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell signal transduction. J Biol Chem 267: 13115–13118

    PubMed  CAS  Google Scholar 

  • Wang JJ, Lu YL, Ratner L (1994) Particle assembly and Vpr expression in human immunodeficiency virus type 1 infected cells demonstrated by immunoelectron microscopy. J Gen Virol 75: 2607–2614

    Article  PubMed  CAS  Google Scholar 

  • Westervelt P, Henkel T, Trowbridge DB, Orenstein J, Heuser J, Gendelman HE, Ratner L (1992) Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol 66: 3925–3931

    PubMed  CAS  Google Scholar 

  • Willey RL, Maldarelli F, Martin MA, Strebel K (1992a) Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J Virol 66: 226–234

    PubMed  CAS  Google Scholar 

  • Willey RL, Maldarelli F, Martin MA, Strebel K (1992b) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66: 7193–7200

    PubMed  CAS  Google Scholar 

  • Willey RL, Buckler-White A, Strebel K (1994) Sequences present in the cytoplasmic domain of CD4 are necessary and sufficient to confer sensitivity to the human immunodeficiency virus type 1 Vpu protein. J Virol 68: 1207–1212

    PubMed  CAS  Google Scholar 

  • Wills JW, Craven RC (1991) Form, function, and use of retroviral Gag proteins. AIDS 5: 639–654

    Google Scholar 

  • Wu X, Conway JA, Kim J, Kappes JC (1994) Localization of Vpx packaging signal within the C terminus of the human immunodeficiency virus type 2 Gag precursor protein. J Virol 68: 6161–6169

    PubMed  CAS  Google Scholar 

  • Yao XJ, Göttlinger H, Haseltine WA, Cohen EA (1992) Envelope glycoprotein and CD4 independence of Vpu facilitated HIV-1 capsid export. J Virol 66: 5119–5126

    PubMed  CAS  Google Scholar 

  • Yao XJ, Garzon S, Boisvert F, Haseltine WA, Cohen EA (1993) The effect of Vpu on HIV-1-induced syncytia formation. J Acquir Immune Defic Syndr 6: 135–141

    PubMed  CAS  Google Scholar 

  • Yao XJ, Friborg J, Checroune F, Gratton S, Boisvert F, Sekaly RP, Cohen EA (1995) Degradation of CD4 induced by human immunodeficiency virus type 1 Vpu protein: a predicted alpha-helix structure in the proximal cytoplasmic region of CD4 contributes to Vpu sensitivity. Virology 209: 615–623

    Article  PubMed  CAS  Google Scholar 

  • YaoXJ, Subbramanian R, Rougeau N, Boisvert F, Bergeron D, Cohen EA (1995) Mutagenic analysis of Hiv-1Vpr: role of a predicted N-terminal alpha helical structure on Vpr nuclear localization and virion incorporation. J virol 69: 7032–7044

    Google Scholar 

  • Yu XF, Yu QC, Essex M, Lee TH (1991) The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophages. J Virol 65: 5088–5091

    PubMed  CAS  Google Scholar 

  • Yu XF, Matsuda Z, Yu QC, Lee TH, Essex M (1993) Vpx of simian immunodeficiency virus is localized primarily outside the virus core in mature virions. J Virol 67: 4386–4390

    PubMed  CAS  Google Scholar 

  • Yuan X, Matsuda Z, Matsuda M, Essex M, Lee TH (1990a) Human immunodeficiency virus vpr gene encodes a virion-associated protein. AIDS Res Hum Retroviruses 6: 1265–1271

    PubMed  CAS  Google Scholar 

  • Yuan X, Matsuda M, Essex M, Lee TH (1990b) Open reading frame vpr of simian immunodeficiency virus encodes a virion-associated protein. J Virol 64: 5688–5693

    Google Scholar 

  • Zhao LJ, Mukherjee S, Narayan O (1994) Biochemical mechanism of HIV-1 Vpr function: specific interaction with a cellular protein. J Biol Chem 289: 15827–15832

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cohen, é.A., Subbramanian, R.A., Göttlinger, H.G. (1996). Role of Auxiliary Proteins in Retroviral Morphogenesis. In: Kräusslich, HG. (eds) Morphogenesis and Maturation of Retroviruses. Current Topics in Microbiology and Immunology, vol 214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80145-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80145-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80147-1

  • Online ISBN: 978-3-642-80145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics