Role of Auxiliary Proteins in Retroviral Morphogenesis

  • é. A. Cohen
  • R. A. Subbramanian
  • H. G. Göttlinger
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 214)

Abstract

Though both the oncoviruses and the lentiviruses belong to the Retroviridae family, the lentiviral subfamily is comparatively complex both from the point of view of the number of viral proteins encoded by these viruses and in the regulation of their expression. In addition to the gag, pol, and env open reading frames (ORFs) present in all retroviruses, lentiviral genomes also contain novel ORFs generally not found in prototypic retroviruses. These ORFs code for a variety of auxiliary proteins which account for the tight and often intricate regulation of gene expression observed in lentiviruses. Auxiliary protein involvement in viral replication has been particularly well characterized in the most extensively studied member of the lentiviral subfamily, the human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immune deficiency syndrome (AIDS).

Keywords

Leukemia Influenza Cysteine Proline Luminal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrigo SJ, Chen IS (1991) Rev is necessary for translation but not the cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 5: 808–819PubMedCrossRefGoogle Scholar
  2. Arya SK, Gallo RC (1986) Three novel genes of human T-lymphotropic virus type III: immune reactivity of their products with sera from acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 83: 2209–2213PubMedCrossRefGoogle Scholar
  3. Blanc D, Patience C, Schulz TF, Weiss R, Spire B (1993) Transcomplementation of VIF” HIV-1 mutants in CEM cells suggests that Vif affects late steps of the viral life cycle. Virology 193: 186–192PubMedCrossRefGoogle Scholar
  4. Bour S, Boulerice F, Wainberg MA (1991) Inhibition of gp160 and CD4 maturation in U937 cells after both defective and productive infections by human immunodeficiency virus type 1. J Virol 65: 6387–6396PubMedGoogle Scholar
  5. Bour S, Schubert U, Strebel K (1995) The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol 69: 1510–1520PubMedGoogle Scholar
  6. Bowerman B, Brown PO, Bishop JM, Varmus HE (1989) A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 3: 469–478PubMedCrossRefGoogle Scholar
  7. Bukrinsky Ml, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365: 666–669PubMedCrossRefGoogle Scholar
  8. Buonocore L, Turi TG, Crise B, Rose JK (1994) Stimulation of heterologous protein degradation by the Vpu protein of HIV-1 requires the transmembrane and cytoplasmic domains of CD4. Virology 204: 482–486PubMedCrossRefGoogle Scholar
  9. Checroune F, Yao XJ, Gottlinger HG, Bergeron D, Cohen EA (1995) Incorporation of Vpr into human immunodeficiency virus type 1: role of conserved regions within the p6 domain of Pr559ag. J AIDS Hum Retroviral 10: 1–7Google Scholar
  10. Chen MY, Maldarelli F, Karczewski MK, Willey RL, Strebel K (1993) Human immunodeficiency type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity. J Virol 67: 3877–3884PubMedGoogle Scholar
  11. Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA (1988) Identification of a protein encoded by the vpu gene of HIV-1. Nature 334: 532–534PubMedCrossRefGoogle Scholar
  12. Cohen EA, Terwilliger EF, Jalinoos Y, Proulx J, Sodroski JG, Haseltine WA (1990b) Identification of HIV-1 Vpr product and function. J Acquir Immune Defic Syndr 3: 11–18PubMedGoogle Scholar
  13. Connor Rl, Chen BK, Choe S, Landau NR (1995) Vpr is required for efficient replication of human immunodeficiency virus type 1 in mononuclear phagocytes. Virology 206: 935–944PubMedCrossRefGoogle Scholar
  14. Crise B, Buonocore L, Rose JK (1990) CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus envelope glycoprotein precursor. J Virol 64: 5585–5593PubMedGoogle Scholar
  15. Cullen BR (1992) Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev 56: 375–394PubMedGoogle Scholar
  16. DesGroseillers L, Jolicoeur P (1983) Physical mapping of the Fv-1 tropism host range determinant of Balb/c murine leukemia viruses. J Virol 48: 685–696Google Scholar
  17. Fan L, Peden K (1992) Cell-free transmission of Vif mutants of HIV-1. Virology 190: 19–29PubMedCrossRefGoogle Scholar
  18. Fisher AG, Ensoli B, Ivanoff L, Chamberlain M, Petteway S, Ratner L, Gallo RC, Wong-Staal F (1987) The sor gene of HIV-1 is required for efficient virus transmission in vitro Science 237: 888–893Google Scholar
  19. Franke EK, Yuan HEH, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions Nature 372: 359–362Google Scholar
  20. Friborg J, Ladha A, Göttlinger H, Haseltine WA, Cohen EA (1995) Functional analysis of the phosphorylation sites on the human immunodeficiency virus type 1 Vpu protein. J AIDS and Hum Retrovirol 8: 10–22Google Scholar
  21. Gabuzda DH, Lawrence K, Langhoff E, Terwilliger E, Dorfman T, Haseltine WA, Sodroski J (1992) Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 66: 6489–6495PubMedGoogle Scholar
  22. Gabuzda DH, Li H, Lawrence K, Vasir BS, Crawford K, Langhoff E (1994) Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocytes/macrophages. J Acquir Immune Defic Syndr 7: 908–915PubMedGoogle Scholar
  23. Garrett ED, Tiley LS, Cullen BR (1991) Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol 65: 1653–1657Google Scholar
  24. Geraghty RJ, Panganiban AT (1993) Human immunodeficiency type 1 Vpu has a CD4” and an envelope glycoprotein-independent function. J Virol 67: 4190–4194PubMedGoogle Scholar
  25. Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, and De Wilde M (1989) Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirusinfected insect cells. Cell 59: 103–112Google Scholar
  26. Goncalves J, Jallepalli P, Gabuzda DH (1994) Subcellular localization of the Vif protein of human immunodeficiency virus type 1. J Virol 68: 704–712PubMedGoogle Scholar
  27. Göttlinger HG, Dorfman T, Cohen EA, Haseltine WA (1993) Human immunodeficiency virus type 1 Vpu enhances the production of capsids from widely divergent retroviruses. Proc Natl Acad Sei USA 90: 7381–7385CrossRefGoogle Scholar
  28. Guy B, Geist M, Dott K, Spehner D, Kieny MP, Lecocq JP (1991) A specific inhibitor of cysteine proteases impairs a Vif-dependent modification of human immunodeficiency virus type 1 Env protein. J Virol 65: 1325–1331PubMedGoogle Scholar
  29. Hattori N, Michaels F, Fargnoli K, Marcon L, Gallo RC, Franchini G (1990) The human immunodeficiency virus type 2 vpr gene is essential for productive infection of humanGoogle Scholar
  30. macrophages. Proc Natl Acad Sei USA 87: 8080–8084Google Scholar
  31. Heinzinger NK, Bukrinsky Ml, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sei USA 91: 7311–7315CrossRefGoogle Scholar
  32. Henderson LE, Sowder RC, Copeland TD, Benveniste RE, Oroszlan S (1988) Isolation and characterization of a novel protein (X-orf product) from SIV and HIV-2. Science 241: 199–201PubMedCrossRefGoogle Scholar
  33. Höglund S, Öhagen A, Lawrence K, Gabuzda D (1994) Role of vif during packing of the core of HIV- 1. Virology 201: 349–355PubMedCrossRefGoogle Scholar
  34. Hopkins N, Schindler J, Hynes R (1977) Six NB-tropic murine leukemia viruses derived from a Btropic virus of Balb/c have altered P30. J Virol 21: 309–318PubMedGoogle Scholar
  35. Horton R, Spearman P, Ratner L (1994) HIV-2 viral protein X associates with the Gag p27 capsid protein. Virology 199: 453–457PubMedCrossRefGoogle Scholar
  36. Huet T, Cheynier R, Meyerhans A (1990) Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345: 356–359PubMedCrossRefGoogle Scholar
  37. Hunter E (1994) Macromolecular interactions in the assembly of HIV and other retroviruses. Semin Virol 5: 71–83CrossRefGoogle Scholar
  38. Jabbar MA, Nayak DP (1990) Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope glycoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane. J Virol 64: 6297–6304PubMedGoogle Scholar
  39. Kan NC, Franchini G, Wong-Staal F, DuBois GC, Robey WG, Lautenberger JA, Papas TS (1986) Identification of HTLV-III/LAV sor gene product and detection of antibodies in human sera. Science 231: 1553–1555PubMedCrossRefGoogle Scholar
  40. Kappes JC, Conway JA, Lee SW, Shaw GM, Hahn BH (1991) Human immunodeficiency virus type 2 Vpx protein augments viral infectivity. Virology 184: 197–209PubMedCrossRefGoogle Scholar
  41. Kappes JC, Parkin JS, Conway JA, Kim J, Brouillette CG, Shaw GM, Hahn BH (1993) Intracellular transport and virion incorporation of Vpx requires interaction with other virus type-specific components. Virology 193: 222–233PubMedCrossRefGoogle Scholar
  42. Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM (1990) The human immunodeficiency virus type 1 specific protein Vpu is required for efficient virus maturation and release. J Virol 64: 621–629PubMedGoogle Scholar
  43. Kondo E, Mammano F, Cohen EA, Göttlinger HG (1995) The p69a9 domain of human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into heterologous viral particles. J Virol 69: 2759–2764PubMedGoogle Scholar
  44. Lang SM, Weeger M, Stahl-Hennig C, Coulibaly C, Hunsmann G, Müller J, Müller-Hermelink H, Fuchs D, Wächter H, Daniel MM, Desrosiers RC, Fleckenstein B (1993) Importance of Vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67: 902–912PubMedGoogle Scholar
  45. Lava I lee C, Yao XY, Ladha A, Göttlinger H, Haseltine WA, Cohen EA (1994) Requirement of the Pr55 Gag precursor for incorporation of Vpr product into human immunodeficiency virus type 1 viral particles. J Virol 68: 1926–1934Google Scholar
  46. Lee TH, Coligan JE, Allan JS, McLane MF, Groopman JE, Essex M (1986) A new HTLV-III/LAV protein encoded by a gene found in cytopathic retroviruses. Science 231: 1546–1549PubMedCrossRefGoogle Scholar
  47. Lenburg ME, Landau NR (1993) Vpu induced degradation of CD4: requirement for specific amino acid residues in the cytoplasmic domain of CD4. J Virol 67: 7238–7245PubMedGoogle Scholar
  48. Levy DN, Fernandes LS, Williams WV, Weiner DB (1993) Induction of cell differentiation by human immunodeficiency virus 1 Vpr. Cell 72: 541–550PubMedCrossRefGoogle Scholar
  49. Levy DN, Refaeli Y, MacGregor RR, Weiner DB (1994) Serum Vpr regulates production, infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sei USA 91: 10873–10877CrossRefGoogle Scholar
  50. Levy ND, Refaeli Y, Weiner DB (1995) Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J Virol 69: 1243–1252PubMedGoogle Scholar
  51. Lewis PL, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68: 510–516PubMedGoogle Scholar
  52. Liska V, Spehner D, Mehtali M, Schmitt D, Kirn A, Aubertin AM (1994) Localization of viral protein X in simian immunodeficiency virus macaque strain and analysis of its packaging requirement. J Gen Virol 75: 2955–2962PubMedCrossRefGoogle Scholar
  53. Lu YL, Spearman P, Ratner L (1993) Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 67: 6542–6550PubMedGoogle Scholar
  54. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73: 1067–1078PubMedCrossRefGoogle Scholar
  55. Ma XY, Sova P, Chao W, Volsky DJ (1994) Cysteine residues in the Vif protein of human immunodeficiency virus type 1 are essential for viral infectivity. J Virol 68: 1714–1720PubMedGoogle Scholar
  56. Mahalingam S, Khan SA, Jabbar MA, Monken CE, Collman RG, Srinivasan A (1995) Identification of residues in the N-terminal acidic domain of HIV-1 Vpr essential for virion incorporation. Virology 207: 297–302PubMedCrossRefGoogle Scholar
  57. Maldarelli F, Chen MY, Willey RL, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J Virol 67: 5056–5061PubMedGoogle Scholar
  58. Michaels FH, Hattori N, Gallo RC, Franchini G (1993) The human immunodeficiency virus type 1 (HIV-1) Vif protein is located in the cytoplasm of infected cells and its effect on viral replication is equivalent in HIV-2. AIDS Res Hum Retroviruses 9: 1025–1030PubMedCrossRefGoogle Scholar
  59. Ogawa K, Shibata R, Kiyomasu T, Higuchi I, Kishida Y, Ishimoto A, Adachi A (1989) Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol 63: 4110–4114PubMedGoogle Scholar
  60. Park IW, Myrick K, Sodroski J (1994) Effects of vif mutations on cell-free infectivity and replication of simian immunodeficiency virus. J Acquir Immune Defic Syndr 7: 1228–1236PubMedGoogle Scholar
  61. Paxton W, Connor Rl, Landau NR (1993) Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J Virol 67: 7229–7237PubMedGoogle Scholar
  62. Raja NU, Vincent MJ, Jabbar MA (1994) Vpu-mediated proteolysis of gp160/CD4 chimeric envelope glycoproteins in the endoplasmic reticulum: requirement of both the anchor and cytoplasmic domains of CD4. Virology 204: 357–366PubMedCrossRefGoogle Scholar
  63. Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12: 2099–2108Google Scholar
  64. Rogel ME, Wu LI, Emerman M (1995) The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J Virol 69: 882–888PubMedGoogle Scholar
  65. Rosenwirth B, Billich A, Datema R, Donatsch P, Hammerschmid F, Harrison R, Hiestand P, Jaksche H, Mayer P, Peichl P, Quesniaux V, Schatz F, Schuurman HJ, Traber R, Wenger R, Wolff B, Zenke G, Zurini M (1994) Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog. Antimicrob Agents Chemother 38: 1763–1772PubMedGoogle Scholar
  66. Sakai K, Ma X, Gordienko I, Volsky D (1991) Recombinational analysis of a natural noncytopathic human immunodeficiency virus type 1 (HIV-1) isolate: role of the vif gene in HIV-1 infectionGoogle Scholar
  67. kinetics and cytopathicity. J Virol 65: 5765–5773Google Scholar
  68. Sakai H, Shibata R, Sakuragi Jl, Sakuragi S, Kawamura M, Adachi A (1993) Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. J Virol 67: 1663–1666PubMedGoogle Scholar
  69. Schreiber SL (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251: 283–287PubMedCrossRefGoogle Scholar
  70. Schubert U, Schneider T, Henklein P, Hoffmann K, Berthold E, Hauser H, Pauli G, Porstmann T (1992) Human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase II. Eur J Biochem 204: 875–883PubMedCrossRefGoogle Scholar
  71. Schubert U, Strebel K (1994) Differential activities of the human immunodeficiency virus type 1 encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J Virol 68: 2260–2271PubMedGoogle Scholar
  72. Schwartz S, Felber BK, Fenyö EM, Pavlakis GN (1990) Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64: 5448–5456Google Scholar
  73. Schwartz S, Felber BK, Pavlakis GN (1991) Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is Rev-dependent and regulated by splicing. Virology 183: 677–686Google Scholar
  74. Sodroski J, Goh WC, Rosen C, Tartar A, Porteteile D, Burny A, Haseltine W (1986) Replicative and cytopathic potential of HTLV-lll/LAV with sor gene deletions. Science 231: 1549–1553PubMedCrossRefGoogle Scholar
  75. Sova P, Volsky DJ (1993) Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J Virol 67: 6322–6326PubMedGoogle Scholar
  76. Steinkasserer A, Harrison R, Billich A, Hammerschmid F, Werner G, Wolff B, Peichl P, Palfi G, Schnitzel W, Mlynar E, Rosenwirth B (1995) Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication. J Virol 69: 814–824PubMedGoogle Scholar
  77. Strebel K, Daugherty D, Clouse K, Cohen D, Folks T, Martin MA (1987) The HIV ‘A ’ (sor) gene product is essential for virus infectivity. Nature 328: 728–730PubMedCrossRefGoogle Scholar
  78. Strebel K, Klimkait T, Martin MA (1988) A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241: 1221–1223PubMedCrossRefGoogle Scholar
  79. Strebel K, Klimkait T, Maldarelli F, Martin MA (1989) Molecular and biochemical analyses of human immunodeficiency virus type 1 Vpu protein. J Virol 63: 3784–3791PubMedGoogle Scholar
  80. Subbramanian RA, Cohen EA (1994) Molecular biology of the human immunodeficiency virus accessory proteins. J Virol 68: 6831–6835PubMedGoogle Scholar
  81. Terwilliger EF, Cohen EA, Lu YC, Sodroski JG, Haseltine WA (1989) Functional role of human immunodeficiency virus type 1 vpu. Proc Natl Acad Sei USA 86: 5163–5167CrossRefGoogle Scholar
  82. Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Göttlinger HG (1994) Functional association of cyclophilin A with HIV-1 virions. Nature 372: 363–365PubMedCrossRefGoogle Scholar
  83. Tristem M, Marshall C, Karpas A, Petrik J, Hill F (1990) Origin of vpx in lentiviruses. Nature 347: 341–342PubMedCrossRefGoogle Scholar
  84. Tristem M, Marshall C, Karpas A, Hill F (1992) Evolution of the primate lentiviruses: evidence from vpx and vpr. EMBO J 11: 3405–3412Google Scholar
  85. Vincent MJ, Raja NU, Jabbar MA (1993) Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domain of CD4: role of the cytoplasmic domain in vpu-induced degradation in the endoplasmic reticulum. J Virol 67: 5538–5549PubMedGoogle Scholar
  86. Walsh CT, Zydowsky LD, McKeon FD (1992) Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell signal transduction. J Biol Chem 267: 13115–13118PubMedGoogle Scholar
  87. Wang JJ, Lu YL, Ratner L (1994) Particle assembly and Vpr expression in human immunodeficiency virus type 1 infected cells demonstrated by immunoelectron microscopy. J Gen Virol 75: 2607–2614PubMedCrossRefGoogle Scholar
  88. Westervelt P, Henkel T, Trowbridge DB, Orenstein J, Heuser J, Gendelman HE, Ratner L (1992) Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol 66: 3925–3931PubMedGoogle Scholar
  89. Willey RL, Maldarelli F, Martin MA, Strebel K (1992a) Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J Virol 66: 226–234PubMedGoogle Scholar
  90. Willey RL, Maldarelli F, Martin MA, Strebel K (1992b) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66: 7193–7200PubMedGoogle Scholar
  91. Willey RL, Buckler-White A, Strebel K (1994) Sequences present in the cytoplasmic domain of CD4 are necessary and sufficient to confer sensitivity to the human immunodeficiency virus type 1 Vpu protein. J Virol 68: 1207–1212PubMedGoogle Scholar
  92. Wills JW, Craven RC (1991) Form, function, and use of retroviral Gag proteins. AIDS 5: 639–654Google Scholar
  93. Wu X, Conway JA, Kim J, Kappes JC (1994) Localization of Vpx packaging signal within the C terminus of the human immunodeficiency virus type 2 Gag precursor protein. J Virol 68: 6161–6169PubMedGoogle Scholar
  94. Yao XJ, Göttlinger H, Haseltine WA, Cohen EA (1992) Envelope glycoprotein and CD4 independence of Vpu facilitated HIV-1 capsid export. J Virol 66: 5119–5126PubMedGoogle Scholar
  95. Yao XJ, Garzon S, Boisvert F, Haseltine WA, Cohen EA (1993) The effect of Vpu on HIV-1-induced syncytia formation. J Acquir Immune Defic Syndr 6: 135–141PubMedGoogle Scholar
  96. Yao XJ, Friborg J, Checroune F, Gratton S, Boisvert F, Sekaly RP, Cohen EA (1995) Degradation of CD4 induced by human immunodeficiency virus type 1 Vpu protein: a predicted alpha-helix structure in the proximal cytoplasmic region of CD4 contributes to Vpu sensitivity. Virology 209: 615–623PubMedCrossRefGoogle Scholar
  97. YaoXJ, Subbramanian R, Rougeau N, Boisvert F, Bergeron D, Cohen EA (1995) Mutagenic analysis of Hiv-1Vpr: role of a predicted N-terminal alpha helical structure on Vpr nuclear localization and virion incorporation. J virol 69: 7032–7044Google Scholar
  98. Yu XF, Yu QC, Essex M, Lee TH (1991) The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophages. J Virol 65: 5088–5091PubMedGoogle Scholar
  99. Yu XF, Matsuda Z, Yu QC, Lee TH, Essex M (1993) Vpx of simian immunodeficiency virus is localized primarily outside the virus core in mature virions. J Virol 67: 4386–4390PubMedGoogle Scholar
  100. Yuan X, Matsuda Z, Matsuda M, Essex M, Lee TH (1990a) Human immunodeficiency virus vpr gene encodes a virion-associated protein. AIDS Res Hum Retroviruses 6: 1265–1271PubMedGoogle Scholar
  101. Yuan X, Matsuda M, Essex M, Lee TH (1990b) Open reading frame vpr of simian immunodeficiency virus encodes a virion-associated protein. J Virol 64: 5688–5693Google Scholar
  102. Zhao LJ, Mukherjee S, Narayan O (1994) Biochemical mechanism of HIV-1 Vpr function: specific interaction with a cellular protein. J Biol Chem 289: 15827–15832Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • é. A. Cohen
    • 1
  • R. A. Subbramanian
    • 1
  • H. G. Göttlinger
    • 2
  1. 1.Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et ImmunologieUniversité de MontréalMontréalCanada
  2. 2.Division of Human Retrovirology, Dana-Farber Cancer Institute, and Department of PathologyHarvard Medical SchoolBostonUSA

Personalised recommendations