Skip to main content

STM Imaging of Single-Atom Adsorbates on Metals

  • Chapter
Scanning Tunneling Microscopy III

Part of the book series: Springer Series in ((SSSUR,volume 29))

  • 431 Accesses

Abstract

Consider the imaging of a single atom adsorbed on a metal surface in the STM. Ideally, the STM tip will also be one atom adsorbed on a group of other metal atoms. For theoretical purposes, we will model this system using two flat metallic electrodes, each of which has a single atom adsorbed on its surface, with one representing the tip and the other the sample. If we calculate the current that flows between these electrodes when a bias voltage is applied between them, then we can study theoretically many of the basic physical aspects of STM imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a discussion of the jellium model, see e.g. N.D. Lang: Density functional approach to the electronic structure of metal surfaces and metal-adsorbate systems, in Theory of the In-homogeneous Electron Gas, ed. by S. Lundqvist, N.H. March (Plenum, New York, 1983), pp. 309–389, or N.D. Lang: The density-functional formalism and the electronic structure of metal surfaces, in Solid State Physics, 28, 225–300 (Academic, New York, 1973). The calculations shown in this article are all for a positive background density n̄ such that r s = 2 bohr, where (4/3)πr 3s ≡ n̄ ̄ 1. This corresponds to a typical high-electron-density metal.

    Google Scholar 

  2. J. Bardeen: Phys. Rev. Lett. 6, 57 (1961)

    Article  ADS  Google Scholar 

  3. J. Tersoff, D.R. Hamann: Phys. Rev. B 31, 805 (1985); Phys. Rev. Lett. 50, 1998 (1983)

    Google Scholar 

  4. Discussions for tip wave functions of higher I values were given in [2.3] and by M.S. Chung, T.E. Feuchtwang, P.H. Cutler: Surf. Sci. 187, 559 (1987); C.J. Chen: J. Vac. Sci. Technol. A 6, 319 (1988); and W. Sacks, C. Noguera: Phys. Rev. B 43, 11612 (1991)

    Article  Google Scholar 

  5. N.D. Lang: Phys. Rev. Lett. 58, 45 (1987)

    Article  ADS  Google Scholar 

  6. N.D. Lang: Phys. Rev. Lett. 55, 230 and 2925 (E) (1985)

    Google Scholar 

  7. N.D. Lang: IBM J. Res. Dev. 30, 374 (1986)

    Article  Google Scholar 

  8. N.D. Lang: Phys. Rev. Lett. 56, 1164 (1986)

    Article  ADS  Google Scholar 

  9. N.D. Lang: Comments Cond. Mat. Phys. 14, 253 (1989)

    Google Scholar 

  10. E. Kopatzki, R.J. Behm: Surf. Sci. 245, 255 (1991)

    Article  ADS  Google Scholar 

  11. D.M. Eigler, P.S. Weiss, E.K. Schweizer, N.D. Lang: Phys. Rev. Lett. 66, 1189 (1991)

    Article  ADS  Google Scholar 

  12. N.D. Lang: Phys. Rev. B 34, 5947 (1986)

    Article  ADS  Google Scholar 

  13. J.A. Stroscio, R.M. Feenstra, A.P. Fein: Phys. Rev. Lett. 57, 2579 (1986); but regarding the role of tip electronic structure in spectroscopy, see by contrast R.M. Tromp, E.J. van Loenen, J.E. Demuth, N.D. Lang: Phys. Rev. B 37, 9042 (1988), where an important tip contribution was observed.

    Google Scholar 

  14. L. Esaki, P.J. Stiles: Phys. Rev. Lett. 16, 1108 (1966)

    Article  ADS  Google Scholar 

  15. P. Bedrossian, D.M. Chen, K. Mortensen, J.A. Golovchenko: Nature 342, 258 (1989)

    Article  ADS  Google Scholar 

  16. I.-W. Lyo, Ph. Avouris: Science 245, 1369 (1989)

    Article  ADS  Google Scholar 

  17. Y. Kuk, P.J. Silverman: J. Vac. Sci. Technol. A 8, 289 (1990). Regarding the role of d states, see also discussion in J.E. Demuth, U. Koehler, R.J. Hamers: J. Microscopy 152, 299 (1988).

    Google Scholar 

  18. N.D. Lang: Phys. Rev. B 36, 8173 (1987)

    Article  ADS  Google Scholar 

  19. J.K. Gimzewski, R. Möller: Phys. Rev. B 36, 1284 (1987); and data of Gimzewski and Möller reproduced in [2.18]

    Google Scholar 

  20. Y. Imry: Physics of mesoscopic systems, in Directions in Condensed Matter Physics: Memorial Volume in Honor of Shang-keng Ma, ed. by G. Grinstein, G. Mazenko (World Scientific, Singapore, 1986), pp. 101–163; R. Landauer: Z. Phys. B 68, 217 (1987)

    Google Scholar 

  21. N.D. Lang: Phys. Rev. B 37, 10395 (1988)

    Article  ADS  Google Scholar 

  22. G. Binnig, H. Rohrer: Surf. Sci. 126, 236 (1983); R. Wiesendanger, L. Eng, H.R. Hidber, P. Oelhafen, L. Rosenthaler, U. Staufer, H.-J. Guntherodt: Surf. Sci. 189/190, 24 (1987); B. Marchon, P. Bernhardt, M. E. Bussell, G.A. Somorjai, M. Salmeron, W. Siekhaus: Phys. Rev. Lett. 60, 1166 (1988)

    Google Scholar 

  23. Another instance of this occurs in the theory of point electron sources: N.D. Lang, A. Yacoby, Y. Imry: Phys. Rev. Lett. 63, 1499 (1989)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, N.D. (1996). STM Imaging of Single-Atom Adsorbates on Metals. In: Wiesendanger, R., Güntherodt, HJ. (eds) Scanning Tunneling Microscopy III. Springer Series in Surface Sciences , vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80118-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80118-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60824-0

  • Online ISBN: 978-3-642-80118-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics