Advertisement

Signal Peptide-Induced Sensory Behavior in Free Ciliates: Bioassays and Cellular Mechanisms

  • V. Leick
  • M. Grave
  • P. Hellung-Larsen
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 17)

Abstract

Cellular chemosensory and other kinds of behavior of protozoa can be considered a fundamental aspect of cellular activity equivalent to cellular growth and sexual reproduction. For motile protozoan cells, the type of chemicals which act as attractants and repellents in natural environments probably reflects the ecological niches which a particular organism selects as its favorite environment, in particular when it has to coexist with other organisms and still survive and maintain its identity. The different chemical stimuli signify the presence of food, mates, toxic conditions, hosts, etc.

Keywords

Peptide Hormone Ciliated Protozoan Ciliary Activity Proteose Peptone Ciliary Beating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almagor M, Ron A, Bar-Tana J (1981) Chemotaxis in Tetrahymena thermophila. Cell Motility 1: 261–268CrossRefGoogle Scholar
  2. Andersen HA, Flodgaard H, Klenow H, Leick V (1984) Platelet-derived growth factor stimulates Chemotaxis and nucleic acid synthesis in the protozoan Tetrahymena. Biochim Biophys Acta 782: 437–440PubMedGoogle Scholar
  3. Bailey GB, Leitch GJ, Day DB (1985) Chemotaxis by Entamoeba histolytica. J Protozool 32: 341–346PubMedGoogle Scholar
  4. Blum JJ (1967) An adrenergic control system in Tetrahymena. Proc Natl Acad Sci USA 58: 81–88PubMedCrossRefGoogle Scholar
  5. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115: 453–466PubMedCrossRefGoogle Scholar
  6. Christensen ST (1993) Insulin rescues the unicellular eukaryote Tetrahymena from dying in a complete, synthetic nutrient medium. Cell Biol Int 17: 833–837PubMedCrossRefGoogle Scholar
  7. Christensen ST, Rasmussen L (1992) Evidence for growth factors which control cell multiplication in Tetrahymena thermophila. Acta Protozool 31: 215–219Google Scholar
  8. Christopher GK, Sundermann CA (1992) Conventional and confocal microscopic studies of insulin receptor induction in Tetrahymena pyriformis. Exp Cell Res 201: 477–484PubMedCrossRefGoogle Scholar
  9. Corliss JO (1979) The ciliated protozoa, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  10. Csaba G (1985) The unicellular Tetrahymena as a model cell for receptor research. Int Rev Cytol 95: 327–377PubMedCrossRefGoogle Scholar
  11. Csaba G, Kovács P (1992) Oxytocin and vasopressin change the activity of the contractile vacuole in Tetrahymena: newer contributions to the phylogeny of hormones and hormone receptors. Comp Biochem Physiol 102A: 353–355CrossRefGoogle Scholar
  12. Csaba G, Lantos T (1975) Effect of insulin on the glucose uptake of protozoa. Experientia 31: 1097–1098PubMedCrossRefGoogle Scholar
  13. De Jesus S, Renaud FL (1989) Phagocytosis in Tetrahymena thermophila: naloxone-reversible inhibition by opiates. Comp Biochem Physiol 92C: 139–142Google Scholar
  14. De Wit RJW, van Bemmelen MXP, Penning LC, Pinas JE, Calandra TD, Bonner JT (1988) Studies of cell-surface glorin receptors, glorin degradation, and glorin-induced cellular responses during development of Polysphondylium violaceum. Exp Cell Res 179: 332–343PubMedCrossRefGoogle Scholar
  15. Francis JT, Hennessey TM (1995) Chemorepellents in Paramecium and Tetrahymena. J Euk Microbiol 42: 78–83PubMedCrossRefGoogle Scholar
  16. Gerisch G (1987) Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Annu Rev Biochem 56: 829–852CrossRefGoogle Scholar
  17. Grave M, Hagemeister JJ, Kristiansen TB, Lyhne I, Hellung-Larsen P (1995) Growth factor removal from Tetrahymena cells leads to cell death at the medium-air interphase. Proc 4th Asian Conf Ciliate Biol, TokyoGoogle Scholar
  18. Häder D-P, Lebert M (1985) Real time computer-controlled tracking of motile microorganisms. Photochem Photobiol 42: 509–514PubMedCrossRefGoogle Scholar
  19. Hellung-Larsen P, Leick V, Tommerup N (1986) Chemoattraction in Tetrahymena: on the role of chemokinesis. Biol Bull 170: 357–367CrossRefGoogle Scholar
  20. Hellung-Larsen P, Leick V, Tommerup N, Kronborg D (1990) Chemotaxis in Tetrahymena. Eur J Protistol 25: 229–233CrossRefGoogle Scholar
  21. Hellung-Larsen P, Lyhne I, Andersen AP, Koppelhus U (1993) Characteristics of dividing and non-dividing Tetrahymena cells at different physiological states. Europ J Protistol 29: 182–190CrossRefGoogle Scholar
  22. Holz GG Jr (1973) The nutrition of Tetrahymena: essential nutrients, feeding and digestion. In: Elliott AM (ed) Biology of Tetrahymena. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, pp 89–98Google Scholar
  23. Honda H, Miyake A (1975) Taxis to a conjugation-inducing substance in the ciliate Blepharisma. Nature 257: 678–680PubMedCrossRefGoogle Scholar
  24. Janakidevi K, Dewey VC, Kidder GW (1966) The biosynthesis of catecholamines in two genera of protozoa. J Biol Chem 241: 2576–2578PubMedGoogle Scholar
  25. Josefsson J-O, Johansson P (1979) Naloxone-reversible effect of opioids on pinocytosis in Amoeba proteus. Nature 282: 78–80PubMedCrossRefGoogle Scholar
  26. Koch AS, Fehér J, Lukovics I (1979) Single model of dynamic receptor pattern generation. Biol Cybern 32: 125–138PubMedCrossRefGoogle Scholar
  27. Köhidai L (1995) Method for determination of chemoattraction in Tetrahymena pyriformis. Curr Microbiol 30: 251–253PubMedCrossRefGoogle Scholar
  28. Köhidai L, Csaba G (1996) Different and selective chenmotactic responses of Tetrahymena pyriformis to two families of signal molecules: lectins and peptide hormones. Acta Microbiol Immunol Hung 43: 83–91PubMedGoogle Scholar
  29. Köhidai L, Barsony J, Roth J, Max SJ (1992) Rapid effects of insulin on cyclic GMP location in an intact protozoan. Experientia 48: 476–481PubMedCrossRefGoogle Scholar
  30. Köhldai L, Karsa J, Csaba G (1994) Effects of hormones on Chemotaxis in Tetrahymena: investigations on receptor memory. Microbios 77: 75–85Google Scholar
  31. Köhidai L, Lemberkovics E, Csaba G (1995) Molecule dependent chemo tactic responses of Tetrahymena pyriformis elicited by volatile oils. Acta Protozool 34: 181–185Google Scholar
  32. Koppelhus U, Helhmg-Larsen P, Leick V (1994a) Physiological parameters affecting the chemosensory response of Tetrahymena. Biol Bull 187: 1–7PubMedCrossRefGoogle Scholar
  33. Koppelhus U, Helhmg-Larsen P, Leick V (1994b) An improved quantitative assay for chemokinesis in Tetrahymena. Biol Bull 187: 8–15PubMedCrossRefGoogle Scholar
  34. Kovács P, Csaba G, Nagao S, Nozawa Y (1989) The regulatory role of calmodulin-dependent guanylate cyclase in association with hormonal imprinting in Tetrahymena. Microbios 59: 123–128PubMedGoogle Scholar
  35. Lapidus IR, Levandowsky M (1981) Mathematical models of behavioral responses to sensory stimuli by protozoa. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, 2nd edn, vol 4. Academic Press, New York, pp 235–260Google Scholar
  36. Leick V (1988) Gliding Tetrahymena thermophila: oriented chemokinesis in a ciliate. Eur J Protistol 23: 354–360CrossRefGoogle Scholar
  37. Leick V (1992) Chemotactic properties, cellular binding and uptake of peptides and peptide derivatives: studies with Tetrahymena thermophila. J Cell Sci 103: 565–570PubMedGoogle Scholar
  38. Leick V, Helle J (1983) A quantitative assay for ciliate Chemotaxis. Anal Biochem 135: 466–469PubMedCrossRefGoogle Scholar
  39. Leick V, Helhmg-Larsen P (1985) Chemosensory responses in Tetrahymena: the involvement of peptides and other signal substances. J Protozool 32: 550–553Google Scholar
  40. Leick V, Hellung-Larsen P (1992) Chemosensory behaviour of Tetrahymena. BioEssays 14: 61–66PubMedCrossRefGoogle Scholar
  41. Leick V, Frederiksen K, Lyhne I, Hellung-Larsen P (1990) A paper membrane filter assay for ciliate chemoattraction. Anal Biochem 184: 63–66PubMedCrossRefGoogle Scholar
  42. Leick V, Koppelhus U, Rosenberg J (1994) Cilia-mediated oriented chemokinesis in Tetrahymena thermophila. J Euk Microbiol 41: 546–553PubMedCrossRefGoogle Scholar
  43. LeRoith D, Roth J (1984) Vertebrate hormones and neuropeptides in microbes: evolutionary origin of intercellular communication. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 8. Raven Press, New York, pp 1–25Google Scholar
  44. LeRoith D, Delahunty G, Wilson GL, Roberts CT Jr, Shemer J, Hart C, Lesniak MA, Shiloach J, Roth J (1986) Evolutionary aspects of the endocrine and nervous systems. Recent Prog Horm Res 42: 549–587PubMedGoogle Scholar
  45. Levandowsky M, Hauser DCR (1978) Chemosensory responses of swimming algae and protozoa. Int Rev Cytol 53: 145–210PubMedCrossRefGoogle Scholar
  46. Levandowsky M, Cheng T, Kehr A, Kim J, Gardner L, Silvern L, Tsang L, Lai G, Chung C, Prakash E (1984) Chemosensory responses to amino acids and certain amines by the ciliate Tetrahymena: a flat capillary assay. Biol Bull 167: 322–330CrossRefGoogle Scholar
  47. Luporini P, Miceli C (1986) Mating pheromones. In: Gall JG (ed) The molecular biology of ciliated protozoa. Academic Press, New York, pp 263–299Google Scholar
  48. Lwoff A (1923) Sur la nutrition des infusoires. C R Acad Sci 176: 928–930Google Scholar
  49. Miyake A (1981) Cell interaction by gamones in Blepharisma. In: O’Day DH, Horgen PA (eds) Sexual interactions eukaryotic microbes. Academic Press, New York, pp 95–129Google Scholar
  50. Morimoto BH, Koshland DE Jr (1991) Short-term and long-term memory in single cells. FASEB J 5: 2061–2067PubMedGoogle Scholar
  51. Nanney DL (1982) Genes and phenes in Tetrahymena. BioScience 32: 783–788CrossRefGoogle Scholar
  52. Ortenzi C, Miceli C, Bradshaw RA, Luporini P (1990) Identification and initial characterization of an autocrine pheromone receptor in the protozoan ciliate Euplotes raikovi. J Cell Biol 111: 607–614PubMedCrossRefGoogle Scholar
  53. O’Neill JB, Pert CB, Ruff MR, Smith CC, Higgins WJ, Zipser B (1988) Identification and characterization of the opiate receptor in the ciliated protozoan, Tetrahymena. Brain Res 450: 303–315PubMedCrossRefGoogle Scholar
  54. Pauli W, Berger S (1992) Chemosensory and electrophysiological responses in toxicity assessment: investigations with a ciliated protozoan. Bull Environ Contam Toxicol 49: 892–899PubMedCrossRefGoogle Scholar
  55. Preparata RM, Meyer EB, Preparata FP, Simon EM, Vossbrinek CR, Nanney DL (1989) Ciliate evolution: the ribosomal phylogenies of the tetrahymenine ciliates. J Mol Evol 28: 427–441PubMedCrossRefGoogle Scholar
  56. Preston RR, Usherwood PNR (1988) Characterization of specific L-[3]-glutamic acid binding site on cilia isolated from Paramecium tetraurelia. J Comp Physiol B 158: 345–351CrossRefGoogle Scholar
  57. Renaud FL, Chiesa R, De Jesús JM, López A, Miranda J, Tomassini N (1991) Hormones and signal transduction in protozoa. Comp Biochem Physiol 100A: 41–45CrossRefGoogle Scholar
  58. Roth J, LeRoith D, Lesniak MA, de Pablo F, Bassas L, Collier E (1986) Molecules of intercellular communication in vertebrates, invertebrates and microbes: do they share common origins? Progr Brain Res 68: 71–79CrossRefGoogle Scholar
  59. Soldo AT, Van Wagtendonk WJ (1969) The nutrition of Paramecium aurelia, stock 299. J Protozool 16: 500–506PubMedGoogle Scholar
  60. Szablewski L, Andreasen PH, Tiedtke A, Florin-Christensen J, Florin-Christensen M, Rasmussen L (1991) Tetrahymena thermophila: growth in synthetic nutrient medium in the presence and absence of glucose. J Protozool 38: 62–65Google Scholar
  61. Van Epps DE, Saland L (1984) β-endorphin and met-enkephalin stimulate human peripheral blood mononuclear cell Chemotaxis. J Immunol 132: 3046–3053PubMedGoogle Scholar
  62. Van Houten J (1978) Two mechanisms of Chemotaxis in Paramecium. J Comp Physiol A 127: 167–174CrossRefGoogle Scholar
  63. Van Houten J (1992) Chemosensory transduction in eukaryotic microorganisms. Annu Rev Physiol 54: 639–663PubMedCrossRefGoogle Scholar
  64. Van Houten J (1994) Chemosensory transduction in eukaryotic microorganisms: trends for neuroscience? Trends Neurosci 17: 62–71PubMedCrossRefGoogle Scholar
  65. Van Houten J, Van Houten JC (1982) Computer analysis of Paramecium chemokinesis behavior. J Theor Biol 98: 453–468CrossRefGoogle Scholar
  66. Van Houten J, Hansma H, Kung C (1975) Two quantitative assays for Chemotaxis in Paramecium. J Comp Physiol 104: 211–223CrossRefGoogle Scholar
  67. Zigmond SH (1977) Ability of polymorphonuclear leucocytes to orient in gradients of chemotactic factors. J Cell Biol 75: 606–616PubMedCrossRefGoogle Scholar
  68. Zigmond S, Sullivan SJ (1979) Sensory adaptation of leucocytes to chemotactic peptides. J Cell Biol 82: 517–527PubMedCrossRefGoogle Scholar
  69. Zipsar B, O’Neill JB, Ruff MR, Smith CC, Higgins WJ, Pert CB (1988) The opiate receptor: a single 110 kDa recognition molecule appears to be conserved in Tetrahymena, leech and rat. Brain Res 463: 296–304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • V. Leick
  • M. Grave
  • P. Hellung-Larsen
    • 1
  1. 1.Institute of Medical Biochemistry and Genetics, Department of Biochemistry BThe University of Copenhagen, The Panum InstituteCopenhagenDenmark

Personalised recommendations