Skip to main content

Physical Modeling of Collapsing Volcanic Columns and Pyroclastic Flows

  • Chapter

Abstract

This chapter presents an overview of physical models of collapsing volcanic columns and pyroclastic flows, and outlines the future modeling prospects on this topic. After a presentation of the modeling approach and a critical review of the developed one-dimensional, steady-state, and homogeneous flow models, the paper describes the main features and results of the more advanced two-dimensional, transient, and two-phase flow models. Such models describe the collapsing volcanic column and pyroclastic flow behavior on an axisymmetric physical domain extending several kilometers in radial and vertical directions, and account for the mechanical and thermal non-equilibrium between gas and solid particles. In the more complete modeling developed to date, the gas phase is composed of hot water vapor leaving the vent and atmospheric air, and the solid phase takes into account one particle size class. Particle collisions are modeled by a kinetic theory for granular flows, and turbulence effects are described by a subgrid scale model in terms of an effective viscosity. The model is able to describe very complex processes related to the dynamics of collapsing volcanic columns and pyroclastic flows, such as eruptive column collapse, the rising of hot plumes from the fountain, the formation of co-ignimbritic clouds from the flow, particle sedimentation effects, and mass-flow rate pulsations of the flow. Preliminary applications to historical eruptions as well as laboratory experiments seem to be consistent with model predictions and are an incentive for new investigations. Despite these important results, such consistency is only qualitative and new greater efforts must be carried out in order to overcome the present modeling limits. This paper tries to outline the future modeling prospects and needs in order to reach an adequate model of collapsing volcanic columns and pyroclastic flows. With this model it will be possible to assess, better than in the past, the volcanic hazard associated with these catastrophic phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeniji-Fashola A, Chen CP (1990) Modeling of confined fluid-particle flows using Eulerian and Lagrangian schemes. Int J Heat Mass Transfer 33: 691–701

    Article  Google Scholar 

  • Anilkumar AV, Sparks RSJ, Sturtevant B (1993) Geological implications and applications of high-velocity two-phase flow experiments. J Volcanol Geotherm Res 56: 145–160

    Article  Google Scholar 

  • Aramaki S (1961) Classification of pyroclastic flows. Int Geol Rev 3: 518–524

    Article  Google Scholar 

  • Bouillard JX, Lyczkowsky RW, Gidaspow D (1989) Porosity distributions in a fluidized bed with an immersed obstacle. AIChE J 35: 908–922

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 AD eruption of Vesuvius. Geol Soc Am Bull 99: 303–314

    Article  Google Scholar 

  • Carey SN, Sigurdsson H, Sparks RSJ (1988) Experimental studies of particle-laden plumes. J Geophys Res 93: 15314–15328

    Article  Google Scholar 

  • Carey SN, Sigurdsson H, Sparks RSJ (1988) Experimental studies of particle-laden plumes. J Geophys Res 93: 15314–15328

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Vulcanic successions: modern and ancient. Allen and Unwin, Winchester

    Book  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of nonuniform gases. Cambridge University Press, London

    Google Scholar 

  • Coniglio S, Dobran F (1994) Simulations of magma ascent along conduits and pyroclastic dispersions at Vulcano (Aeolian Islands, Italy). J Volcanol Geotherm Res 65: 297-

    Article  Google Scholar 

  • Crowe CT (1982) Review: numerical models for dilute gas-particle flows. J Fluids Eng 104: 297–303

    Article  Google Scholar 

  • Denlinger RP (1987) A model for generation of ash clouds by pyroclastic flows, with application to the 1980 eruption to Mt. St. Helens, Washington. J Geophys Res 92: 10284–10298

    Article  Google Scholar 

  • Ding J, Gidaspow D (1990) A bubbling fluidization model using kinetic theory of granular flow. AIChE J 36: 523–538

    Article  Google Scholar 

  • Ding J, Lyczkowsky RW (1992) Three-dimensional kinetic theory modeling of hydrodynamics and erosion in fluidized beds. Powder Technol 73: 127–138

    Article  Google Scholar 

  • Dobran F (1985) Theory of multiphase mixtures. Int J Multiphase Flow 11: 1–30

    Article  Google Scholar 

  • Dobran F (1991) Theory of Structured Multiphase Mixtures. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dobran F (1992) Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79. J Volcanol Geotherm Res 49: 285–311

    Article  Google Scholar 

  • Dobran F (1993) Global volcanic simulation of Vesuvius. Gruppo Nazionale per la Vulcanologia. Giardini, Pisa

    Google Scholar 

  • Dobran F, Barberi F, Casarosa C (1990) Modeling of volcanological processes and simulation of volcanic eruptions. Gruppo Nazionale per la Vulcanologia. Giardini, Pisa

    Google Scholar 

  • Dobran F, Neri A, Macedonio G (1993) Numerical simulation of collapsing volcanic columns. J Geophys Res 98: 4231–4259

    Article  Google Scholar 

  • Dobran F, Neri A, Todesco M (1994) Assessing the pyroclastic flow hazard at Vesuvius. Nature 367: 551–554

    Article  Google Scholar 

  • Fisher RV (1979) Models for pyroclastic surges and pyroclastic flows. J Volcanol Geotherm Res 6: 305–318

    Article  Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Gidaspow D (1986) Hydrodynamics of fluidization and heat transfer: supercomputing modeling. Appl Mech Rev 39: 1–23

    Article  Google Scholar 

  • Gidaspow D (1994) Multiphase flow and fluidization. Continuum and kinetic theory descriptions. Academic Press, New York

    Google Scholar 

  • Giordano G, Dobran F (1994) Computer simulations of the Tuscolano Artemisio’s II pyroclastic flow unit (Alban Hills, Latium, Italy). J Volcanol Geotherm Res 61: 45–68

    Article  Google Scholar 

  • Grove N (1992) Volcanoes: Crucibles of creation. Natl Geogr Mag 182: 5–41

    Google Scholar 

  • Harlow FH, Amsden AA (1975) Numerical calculation of multiphase fluid flow. J Comput Phys 17: 19–52

    Article  Google Scholar 

  • Himmelblau DM (1970) Process analysis by statistical methods. John Wiley, New York

    Google Scholar 

  • Hoblitt RP (1986) Observations of the July 22 and August 7, 1980 eruptions and pyroclastic flows at Mount St. Helens, Washington. U S Geol Surv Prof Pap 1335

    Google Scholar 

  • Horn M (1989) DANIEL: a computer code for high speed dusty gas with multiple particle sizes. Los Alamos National Laboratory LA-11445-MS, Los Alamos, New Mexico

    Google Scholar 

  • Hsü KJ (1975) Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86: 129–140

    Article  Google Scholar 

  • Huppert HE (1986) The intrusion of fluidmechanics into geology. J Fluid Mech 173: 557–594

    Article  Google Scholar 

  • Huppert HE, Turner JS, Carey SN, Sparks RSJ, Hallworth MA (1986) A laboratory simulation of pyroclastic flows down slopes. J Volcanol Geotherm Res 30: 179–199

    Article  Google Scholar 

  • Ishii M (1975) Thermo-fluid dynamic theory of two-phase flows. Eyrolles, Paris

    Google Scholar 

  • Jenkins JT, Savage SB (1983) A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J Fluid Mech 130: 187–202

    Article  Google Scholar 

  • Kieffer SW (1984) Factors governing the structure of volcanic jets. In: Explosive volcanism: inception, evolution, and hazards. National Academy Press, Washington, DC, pp 143–157

    Google Scholar 

  • Kieffer SW, Sturtevant B (1984) Laboratory studies of volcanic jets. J Geophys Res 89: 8253–8268

    Article  Google Scholar 

  • Lun CKK, Savage SB, Jeffrey DJ, Chepurnity N (1984) Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J Fluid Mech 140: 223–256

    Article  Google Scholar 

  • Macedonio G, Dobran F, Neri A (1994) Erosion processes in volcanic conduits and an application to the AD 79 eruption of Vesuvius. Earth Planet Sci Lett 121: 137–152

    Article  Google Scholar 

  • Malin MC, Sheridan MF (1982) Computer-assisted mapping of pyroclastic surges. Science 217: 637–640

    Article  Google Scholar 

  • Mostafa AA, Mongia HC (1988) On the interaction of particles and turbulent fluid flow. Int J Heat Mass Transfer 31: 2063–2075

    Article  Google Scholar 

  • Neri A, Dobran F (1994) Influence of eruption parameters on the thermo-fluid dynamics of collapsing volcanic columns. J Geophys Res 99: 11833–11857

    Article  Google Scholar 

  • Ogawa S, Umemura A, Oshima N (1980) On the equations of fully fluidized granular materials. Z Angew Math Phys 31: 483–493

    Article  Google Scholar 

  • Papale P, Dobran F (1993) Modeling of the ascent of magma during the plinian eruption of Vesuvius in AD 79. J Volcanol Geotherm Res 58: 101–132

    Article  Google Scholar 

  • Papale P, Dobran F (1994) Magma flow along the volcanic conduit during the plinian and pyroclastic flow phases of the May 18, 1980 Mt. St. Helens eruptions. J Geophys Res 99: 4355–4373

    Article  Google Scholar 

  • Ramos JI (1991) Simulation of global volcanic systems: numerical and computer implementation challenges. In: Dobran F, Mulargia F (eds) Prospects for the simulation of volcanic eruptions. Giardini, Pisa

    Google Scholar 

  • Rampino MR, Self S (1982) Historic eruptions of Tambora (1815), Krakatau (1883), and Agung (1963); their stratospheric aerosols and climatic impact. Quat Res 18: 127–143

    Article  Google Scholar 

  • Rose WI Jr, Pearson T, Boris S (1977) Nuèe ardente eruption from the foot of a dacite lava flow, Santaguito volcano, Guatemala. Bull Volcanol 40: 1–16

    Google Scholar 

  • Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvian eruption: a reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58: 151–182

    Article  Google Scholar 

  • Savage SB (1979) Gravity flow of cohesionless granular materials in chutes and channels. J Fluid Mech 92: 53–96

    Article  Google Scholar 

  • Savage SB (1988) Streaming motions in a bed of vibrationally fluidized dry granular material. J Fluid Mech 194: 457–478

    Article  Google Scholar 

  • Schlichting H (1960) Boundary layer theory. McGraw-Hill, New York

    Google Scholar 

  • Sheridan MF (1979) Emplacement of pyroclastic flows: a review. Geol Soc Am, Spec Pap 180: 125–136

    Google Scholar 

  • Sigurdsson H, Carey S (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull Volcanol 51: 243–270

    Article  Google Scholar 

  • Smith RL (1960a) Zones and zonal variation in welded ash-flows. U S Geol Surv Prof Pap 345-f

    Google Scholar 

  • Smith RL (1960b) Ash flows. Geol Soc Am Bull 71: 795–842

    Article  Google Scholar 

  • Sparks RSJ (1976) Grain size variations in ignimbrites and applications for the transport of pyroclastic flows. Sedimentology 23: 147–188

    Article  Google Scholar 

  • Sparks RSJ, Wilson L (1976) A model for the formation of ignimbrite by gravitational column collapse. J Geol Soc Lond 132: 441–451

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Hulme G (1978) Theoretical modeling of the generation, movement, and emplacement of pyroclastic flows by column collapse. J Geophys Res 83: 1727–1739

    Article  Google Scholar 

  • Truesdell C, Noll W (1965) The non-linear field theories of mechanics. Handbuch der Physik, Band III/l. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Valentine GA, Wohletz KH (1989a) Numerical models of plinian eruption columns and pyroclastic flows. J Geophys Res 94: 1867–1887

    Article  Google Scholar 

  • Valentine GA, Wohletz KH (1989b) Environmental hazards of pyroclastic flows determined by numerical models. Geology 17: 641–644

    Article  Google Scholar 

  • Valentine GA, Wohletz KH, Kieffer SW (1991) Sources of unsteady column dynamics in pyr-oclastic flow eruptions. J Geophys Res 96: 21887–21892

    Article  Google Scholar 

  • Valentine GA, Wohletz KH, Kieffer SW (1992) Effects of topography of facies and compositional zonation in caldera-related ignimbrites. Geol Soc Am Bull 104: 154–165

    Article  Google Scholar 

  • Wakao N, Kaguei S, Funazkri T (1979) Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Chem Eng Sci 34: 325–336

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions: a new classification scheme. Geol Rundsch 62: 431–446

    Article  Google Scholar 

  • Walker GPL (1981) Generation and dispersal of fine ash and dust by volcanic eruptions. J Volcanol Geotherm Res 11: 81–92

    Article  Google Scholar 

  • Walker GPL (1985) Origin of coarse lithic breccias near ignimbrite source vents. J Volcanol Geotherm Res 25: 157–171

    Article  Google Scholar 

  • Walker GPL, Hayashi JN, Self S (1995) Travel of pyroclastic flows as transient waves: implications for the energy line concept and particle-concentration assessment. J Volcanol Geotherm Res, (in press)

    Google Scholar 

  • Wallis GB (1969) One-dimensional two-phase flow. McGraw Hill, New York

    Google Scholar 

  • Wilson CJN (1980) The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. J Volcanol Geotherm Res 8: 231–249

    Article  Google Scholar 

  • Wilson CJN (1984) The role of fluidization in the emplacement of pyroclastic flows, 2: experimental results and their interpretation. J Volcanol Geotherm Res 20: 55–84

    Article  Google Scholar 

  • Wilson CJN, Walker GPL (1982) Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J Geol Soc Lond 139: 581–592

    Article  Google Scholar 

  • Wilson L (1976) Explosive volcanic eruptions, III. Plinian eruption columns. Geophys J R Astron Soc 45: 543–556

    Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions IV. The control of magma properties and conduit geometry on eruption column behavior. Geophys J R Astron Soc 63: 117–148

    Google Scholar 

  • Wilson L, Walker GPL (1987) Explosive volcanic eruptions VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J R Astron Soc 89: 657–679

    Google Scholar 

  • Wohletz KH, Valentine GA (1990) Computer simulations of explosive volcanic eruptions. In: Ryan MP (ed) Magma transport and storage. John Wiley, New York, pp 113–135

    Google Scholar 

  • Wohletz KH, McGetchin TR, Sandford MT II, Jones EM (1984) Hydrodynamic aspects of cal-dera-forming eruptions: numerical models. J Geophys Res 89: 8269–8285

    Article  Google Scholar 

  • Woods AW (1988) A fluid-dynamics and thermodynamics of eruption columns. Bull Volcanol 50: 169–193

    Article  Google Scholar 

  • Woods AW, Caulfield CP (1992) A laboratory study of explosive volcanic eruptions. J Geophys Res 97: 6699–6712

    Article  Google Scholar 

  • Woods AW, Bursik MI (1994) A laboratory study of ash flows. J Geophys Res 99: 4375–4394

    Article  Google Scholar 

  • Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8: 315–336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neri, A., Macedonio, G. (1996). Physical Modeling of Collapsing Volcanic Columns and Pyroclastic Flows. In: Monitoring and Mitigation of Volcano Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80087-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80089-4

  • Online ISBN: 978-3-642-80087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics