Skip to main content

Interactions Between CD44 and Hyaluronic Acid: Their Role in Tumor Growth and Metastasis

  • Chapter
Attempts to Understand Metastasis Formation III

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 213/3))

Abstract

Adhesion molecules enable lymphocytes to interact with antigen-presenting cells or target cells more effectively (Springer 1990; Butcher 1986; Stoolman 1989). Adhesion molecules also allow lymphocytes or monocytes to interact with endothelial cells or high endothelial venules (HEV). Adhesion molecules enable lymphocytes or monocytes to recirculate and home to specific anatomical sites during inflammation. Tumor metastasis is a complex phenomenon involving a sequence of events that remain poorly understood (Fidler 1978; Nicolson 1988; Kahn 1992; Stetler-Stevenson et al. 1993; Turley 1984). Tumor metastatic cascade involves tumor cell and host cell interactions and may also involve interactions among tumor cells. Tumor cells developed in different microenvironments may utilize different mechanisms for invasion and metastasis. This interpretation was supported by results obtained from experiments using orthoptopic implantation of human carcinoma cells in nude mice (Fidler and Radinsky 1990; Fidler et al. 1990). Human colon carcinoma cell lines do not metastasize unless they are injected into the cecum or spleen of nude mice (Fidler 1991). Subcutaneous injection of the same tumor cell lines results in a significantly lower frequency of metastasis formation. These observations have also been observed with human breast, stomach, pancreas, and prostate tumor cell lines (Fidler and Radinsky 1990; Fidler 1990, 1991). In general, orthotopic transplants of human tumors into nude mice favors recapitulation of the metastatic patterns seen in patients with the same tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alho AM, Underhill CB (1989) The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol 108: 1557–1565

    PubMed  CAS  Google Scholar 

  • Altomonte M, Colizzi F, Esposito G, Maio M (1993) Circulating intercellular adhesion molecule 1 as a marker of disease progression in cutaneous melanoma. N Engl J Med 327: 959

    Google Scholar 

  • Andres JL, Stanley K, Cheifetz K, Massague J (1989) Membrane anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor B. J Cell Biol 109: 3137–3145

    PubMed  CAS  Google Scholar 

  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluraonate. Cell 61: 1303–1311

    PubMed  CAS  Google Scholar 

  • Asplund T, Heldin P (1994) Hyaluronan receptors are expressed on human malignant mesothelioma cells but not on normal mesothelial cells. Cancer 54: 4516–4523

    CAS  Google Scholar 

  • Bartolazzi A, Peach R, Aruffo A, Stamenkovic I (1994) Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med 180: 53–66

    PubMed  CAS  Google Scholar 

  • Bazil V, Horejsi V (1992) Shedding of the CD44 adhesion molecules from leukocytes induced by anti-CD44 monoclonal antibody stimulating the effect of a natural receptor ligand. J Immunol 149: 747–753

    PubMed  CAS  Google Scholar 

  • Bennet KL, Jackson DG, Simon JC et al (1995) CD44 isoforms containing exon V3 are responsible for the presentation of heparin binding growth factor. J Cell Biol 128: 687–698

    Google Scholar 

  • Birch M, Mitchell S, Hart IR (1991) Isolation and characterization of human melanoma variants expressing high and low levels of CD44. Cancer Res 51: 6660–6667

    PubMed  CAS  Google Scholar 

  • Bourguignon LYW, Kalomiris EL, Lokeshwar VB (1991) Acylation of the lymphoma transmembrane glycoprotein GP85, may be required for GP-85 ankyrin interaction. J Biol Chem 266: 1761–1765

    Google Scholar 

  • Brown TA, Bouchard T, St. John T, Wayner E, Carter WG (1991) Human keratinocytes express a new CD44 core protein (CD44E) as a heparin sulfate intransic membrane proteoglycan with additional exons. J Cell Biol 113: 207–216

    PubMed  CAS  Google Scholar 

  • Budd RC, Cerottini C, Horvath C et al. (1987) Distinction of virgin and memory T lymphocytes: stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J Immunol 138: 3120–3129

    PubMed  CAS  Google Scholar 

  • Butcher EC (1986) The regulation of lymphocytes traffic. Curr Top Microbiol Immunol 128: 85–124

    PubMed  CAS  Google Scholar 

  • Camp RL, Kraus TS, Birkeland L, Pure E (1991) High levels of CD44 expression distinguish virgin from antigen primed B cells. J Exp Med 173: 763–766

    PubMed  CAS  Google Scholar 

  • Camp RL, Kraus TA, Pure E (1992) Variations in the cytoskeletal interaction and post translational modifications of the CD44 homing receptor in macrophages. J Cell Biol 115: 1283–1292

    Google Scholar 

  • Cannistra SP, Kanasa GS, Niloff J, DeFranzo B, Kim Y, Ottensmeier C (1993) Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44 H. Cancer Res 53: 3830–3838

    PubMed  CAS  Google Scholar 

  • Carter WG, Wayner EA (1988) Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleared human cells. J Biol Chem 263: 4193–4201

    PubMed  CAS  Google Scholar 

  • Chandrasekhar S, Kleinman HK, Rasseil JR (1983) Interaction of link protein with collagen. J Biol Chem 258: 6226–6231

    PubMed  CAS  Google Scholar 

  • Classen SD, Eierman W, Wolf H, Kopp R, Wilmans W (1995) CD44 variant in serum of breast cancer?patients: a prognostic factor for clinical progresison? Proc Am Assoc Cancer Res 36:209

    Google Scholar 

  • Cross AS, Wright DG (1991) Mobilization of sialidase from intracellular stores to the surface of human neutrophils and its role in stimulated adhesion responses of these cells. J Clin Invest 88: 2067–2076

    PubMed  CAS  Google Scholar 

  • Culty M, Miyake K, Underhill CB (1992) Binding and degradation of hyaluronan by human breast cancer cell lines expresssion different forms of CD44; correlation with invasive potential. J Cell Physiol 160: 275–286

    Google Scholar 

  • Deak F, Kiss I, Sparks KJ, Argraves WS, Hampikian G, Foetinck PF (1986) Complete amino acid sequence of chicken cartilage link protein deduced from cDNA clones. Proc Natl Acad Sci USA 83: 3766–3770

    PubMed  CAS  Google Scholar 

  • DeGasperi R, Thomas LJ, Sugiyama E et al (1990) Correction of a defect in mammalian GPI anchor biosynthesis by a transfected yeast gene. Science 250: 988–991

    PubMed  CAS  Google Scholar 

  • Denning SM, Lee PT, Singer KH, Haynes BF (1990) Antibodies against the CD44 p80, lymphocyte homing receptor molecule augment human peripheral blood T cell activation. J Immunol 144: 7–15

    PubMed  CAS  Google Scholar 

  • Dennis J, Waller C, Timpl R, Schirmacher V (1982) Surface sialic acid reduces attachment of metastatic tumor cells to collagen type IV and fibronectin. Nature 300: 274–276

    PubMed  CAS  Google Scholar 

  • Doege K, Sasaki M, Horigan E, Hassel J, Yamada Y (1987) Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA sequences. J Biol Chem 262: 17757–17763

    PubMed  CAS  Google Scholar 

  • Faassem AE, Schräger JA, Klein DJ, Oegema TR, Couchman JR, McCarthy JB (1992) A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44 is involved in type collagen mediated melanoma cell motility and invasion. J Cell Biol 116: 521–531

    Google Scholar 

  • Fidler IJ (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38: 2651–2660

    PubMed  CAS  Google Scholar 

  • Fidler IJ (1991) Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastasis Rev 10: 229–243

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Radinsky R (1990) Genetic control of cancer metastasis. J Natl Cancer Inst 82: 166–168

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Naito S, Pathak S (1990) Orthotopic implantation is essential for the selection, growth and metastasis of human renal cell cancer in nude mice. Cancer Metastasis Rev 9: 149–165

    PubMed  CAS  Google Scholar 

  • Fogel M, Altevogt P, Schiramacher V (1983) metastatic potential severely altered by changes in tumor cell adhesiveness and cell surface sialylation. J Exp Med 157: 371–376

    PubMed  CAS  Google Scholar 

  • Folkman J, Klagsbum M (1987) Angiogenesis factors. Science 235: 442–447

    PubMed  CAS  Google Scholar 

  • Folkman J (1991) Tumor angiogenesis. In: Holland JF (ed) Cancer medicine. Lee and Febiger, Philadelphia

    Google Scholar 

  • Fox SB, Gatter KC, Jackson DG et al (1993) CD44 and cancer screening. Lancet 342: 548–549

    PubMed  CAS  Google Scholar 

  • Fox SB, Fawcett J, Jackson DG et al (1994) Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res 54: 4539–4546

    PubMed  CAS  Google Scholar 

  • Fujita N, Yaegashi K, Ide Y et al (1994) Expression of CD44 in normal versus tumor endometrial tissues: possible implication of reduced expression of CD44 in lymph-vascular space involvement of cancer cells. Cancer Res 54: 3922–3928

    PubMed  CAS  Google Scholar 

  • Gross N, Beretta C, Eruisseau GM, Jackson D, Simmons D, Beck D (1994) CD44H expression by human neuroblastoma cells: relation to MYCN amplication and lineage differentiation. Cancer Res 54: 4238–4242

    PubMed  CAS  Google Scholar 

  • Gunthert U, Hofman M, Rudy S et al (1991) A new variant of glycoprotein CD44 congers metastatic potential to rat carcinoma cells. Cell 65: 13–24

    PubMed  CAS  Google Scholar 

  • Guo YJ, Ma J, Wong H et al. (1993) Monoclonal anti-CD44 antibody acts in synergy with anti-CD2 but inhibtis anti-CD3 or T cell receptor mediated signaling in murine T cell hybridomas. Cell Immunol 153: 186–191

    Google Scholar 

  • Guo YJ, Ling SC, Wong, Sy MS (1994) Acylation of CD44 may interfere with CD3 mediated signaling in human lymphocytes. Int Immunol 6(2): 213–221

    PubMed  CAS  Google Scholar 

  • Guo YJ, Ma J, Wang JH et al (1994) Inhibition of human melanoma growth and metastasis in vivo by anti-CD44 monoclonal antibody. Cancer Res 54: 1561–1565

    PubMed  CAS  Google Scholar 

  • Guo YJ, Liu GG, Wang XN et al (1994) Soluble CD44 in the serum as an indicator of tumor growth and metastasis in patients with gastric or colon cancer. Cancer Res 54: 422–426

    PubMed  CAS  Google Scholar 

  • Hanning R, Mainolfi E, Bystryn JC, Henn M, Merluzzi VJ, Rothlein R (1991) Serum levels of circulating intercellular adhesion molecule 1 expression in human malignant melanoma. Cancer Res 51: 5003–5005

    Google Scholar 

  • Hardingham TE, Hosang AJ (1992) proteoglycans: many forms and many functions. FASEB J 6: 861–870

    PubMed  CAS  Google Scholar 

  • Hardwick C, Hoare K, Owens R et al (1992) Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol 117: 1343–1350

    PubMed  CAS  Google Scholar 

  • Hart I, Birch M, Marshall JF (1991) Cell adhesion receptor expression during melanoma progression and metastasis. Cancer Metastasis Rev 10: 115–135

    PubMed  CAS  Google Scholar 

  • Haynes BF, Telen MJ, Hale LP, Denning SM (1989) CD44 a molecule involved in leukocyte adherence and T cell activation. Immunol Today 10: 423–427

    PubMed  CAS  Google Scholar 

  • Haynes BF, Hale LP, Patton KL, Martin ME, McCallum RM (1991) Measurement of an adhesion molecule as an indicator of inflammatory disease activity. UP-regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis Rheum 34: 1434–1441

    PubMed  CAS  Google Scholar 

  • Heider K-H, Hofmann M, Hors E et al. (1993) A human homologue of the rat metastasis associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J Cell Biol 120: 227–233

    PubMed  CAS  Google Scholar 

  • Herlyn M, Rodeck U, Koprowski H (1987) Shedding of human tumor associated antigens in vitro and in vivo. Adv Cancer Res 49: 189–221

    PubMed  CAS  Google Scholar 

  • Herrlich P, Rudy W, Hofmann M et al. (1993) CD44 and splice variants of CD44 in normal differentiation and tumor progression. In: Hemler M, Mihich E (eds) Cell adhesion molecules. Plenum, New York, pp 265–288

    Google Scholar 

  • Hoessli DC (1980) T lymphocyte differentiation is accompanied by increase in sialic acid content of Thy-1 antigen. Nature 283: 576–577

    PubMed  CAS  Google Scholar 

  • Hofmann U, Rudy W, Zooler M et al (1991) CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res 51: 5292–5297

    PubMed  CAS  Google Scholar 

  • Horai T, Nakamura N, Tateishi R, Hattori S (1981) Glycosaminoglycans in human lung cancer. Cancer 48: 2016–2021.

    PubMed  CAS  Google Scholar 

  • Horst E, Meijer CJ, Radaszkiewicz T, Oseloppele GJ, Van Krieken JH, Pals ST (1990) Adhesion molecules in the prognosis of diffuse lage-cell lymphoma: expression of a lymphocyte homing receptor (CD44), LFA-1, (CD11a/18) and ICAM-1 (CD54). Leukemia 4: 595–599

    PubMed  CAS  Google Scholar 

  • Huet SH, Groux H, Caillou B, Valentin H, Prieur AM, Bernard A (1989) CD44 contributes to T cell activation. J Immunol 143: 798–801

    PubMed  CAS  Google Scholar 

  • Hughes EN, Mengod G, August JT (1981) Murine cell surface glycoproteins. Characterization of a major components of 80,000 daltons as a polymorphic differentiation antigen of mesenchyma cells. J Biol Chem 256: 7023–7027

    PubMed  CAS  Google Scholar 

  • Jalkanen S, Bargatze RF, del los Toyos J, Butcher EC (1987) Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85–95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol 105: 983–990

    PubMed  CAS  Google Scholar 

  • Jalkanen S, Jalknen M (1992) Lymphocyte CD44 binds the COOH-terminal heparin binding domain of fibronectin. J Cell Biol 116: 817–825

    PubMed  CAS  Google Scholar 

  • Kageshita T, Yoshii A, Kimura T et al (1993) Clinical relevance of ICAM-1 expression in primary lesions and serum of patients with malignant melanoma. Cancer Res 53: 4927–4932

    PubMed  CAS  Google Scholar 

  • Kahn P (1992) Adhesion protein studies provide new clue to metastasis. Science 257: 614–615

    PubMed  CAS  Google Scholar 

  • Kalomiris EL, Bourguignon LYW (1988a) Mouse T lymphoma cells contain a transmembrane glycoprotein (GP85) that binds ankyrin. J Cell Biol 106: 319–327

    PubMed  CAS  Google Scholar 

  • Kalomiris EL, Bourguignon LYW (1988b) Lymphoma protein kinase C is associated with the transmembrane glycoprotein gp85, and may function in gp85 ankyrin binding. J Biol Chem 264: 8113–8120

    Google Scholar 

  • Katoh S, McCarthy JB, Kincade PW (1994) Characterization of soluble CD44 in the circulation of mice: levels are affected by immune activity and tumor growth. J Immunol 152: 3441–3449

    Google Scholar 

  • Kennel SJ, Lankford TK, Foote LJ, Shinpock SG, Stringer C (1993) CD44 expression of murine tissues. J Cell Sci 104: 373–382

    PubMed  CAS  Google Scholar 

  • Kiefer MC, Stephans JC, Crawford K, Okino K, Barr PJ (1990) Ligand affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor. Proc Natl Acad Sci USA 87: 6985–6989

    PubMed  CAS  Google Scholar 

  • Knudson W, Biswas C, Li X-Q, Nemec RE, Toole BP (1989) The role and regulation of tumor associated hyaluronan. The biology of hyaluronan. Ciba Found Symp 143: 150–160

    Google Scholar 

  • Knutson JR, Fields GB, Lida J, Miles AJ, McCarthy JB (1995) A type IV collagen derived synthetic peptide, IN-H1, interacts with human melanoma CD44 chondroitin sulfate proteoglycan and inhibitis invasion of basement membranes. Proc Am Assoc Cancer Res 36: 68

    Google Scholar 

  • Koopman G, Heider K-H, Horst E et al. (1993) Activated human lymphocytes and aggressive non-Hodgkin’s lymphomas express a homologue of the rat metastasis associated variant of CD44. J Exp Med 177: 897–904

    PubMed  CAS  Google Scholar 

  • Krusius T, Gehlsen KR, Ruoslahti E (1987) A fibroblast chondroitin sulfate proteoglycan core protein contains lectin like and growth factor like sequence. J Cell Biol 262: 13120–13125

    CAS  Google Scholar 

  • Lacy BE, Underhill CB (1987) The hyaluronate receptor is associated with actin filaments. J Cell Biol 105: 1395–1404

    PubMed  CAS  Google Scholar 

  • Laurent TC, Fraser JRE (1992) Hyaluronan. FASEB J 6: 2397–2404

    PubMed  CAS  Google Scholar 

  • Lee TH, Wisniewski H-G, Vilcek J (1992) A novel secretory tumor necrosis factor inducible protein is a member of the family of hyaluronate binding proteins closely related to the adhesion receptor CD44. J Cell Biol 116: 545–557

    PubMed  CAS  Google Scholar 

  • Legras S, Gunthert U, Li Y et al. (1995) CD44 alternative splicing in normal human myelopoiesis and its deregulation in acute myeloblastic leukemia (AML). Proc Am Assoc Cancer Res 36: 465–465

    Google Scholar 

  • Lesley J, Schulte R, Hyman R (1990) Binding of hyaluronic acid to lymphoid cell lines is inhibited by monoclonal antibodies against Pgp-1. J Exp Cell Res 187: 224–229

    CAS  Google Scholar 

  • Lesley J Q H, Miyake K, Hamann A, Hyman R, Kincade PW (1992) Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med 172: 257–266

    Google Scholar 

  • Lesley J, Hyman R, Kincade PL (1993) CD44 and its interaction with extracellular matrix. Adv Immunol 34: 271–335

    Google Scholar 

  • Liao HX, Levesqjue MC, Patton K et al (1993) Regulation of human CD44H and CD44E isoform binding to hyaluronan by phorbol myristate acetate and anti-CD44 monoclonal and polyclonal antibodies. J Immnol 151: 6490–6499

    CAS  Google Scholar 

  • Lloyd CW (1975) Sialic acid and the social behavior of cells. Biol Rev 50: 325–350

    PubMed  CAS  Google Scholar 

  • Lokeshwar VB, Bourguignon LYW (1992) The lymphoma transmembrane glycoprotein GP85 (CD44) is a novel guanine nucleotide binding protein which regulates GP85 (CD44)-ankyrin interaction. J Biol Chem 267: 22073–22078

    PubMed  CAS  Google Scholar 

  • Lucas MG, Green AM, Telen MJ (1989) Characterization of the serum In (Lu)-related antigen: identification of a serum protein related to erythrocyte p80. Blood 73: 596–600

    PubMed  CAS  Google Scholar 

  • Lynch F, Ceredig R (1988) Lyt24 (Pgp-1) expression by thymocytes and peripheral T cells. Immunol Today 9: 7–10

    PubMed  CAS  Google Scholar 

  • MacLeod CL, Weinroth SE, Sterifinger C, Glaser SM, Hays EF (1985) SL12 murine T lymphoma: a new model for tumor cell heterogeneity. J Natl Cancer Inst 74: 875–879

    PubMed  CAS  Google Scholar 

  • Matsumura Y, Tarin D (1993) Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet 340: 1053–1058

    Google Scholar 

  • Matsumura Y, Smith S, Tarin JC (1995) Cancer diagnosis by detection of new abnormalities in splicing of CD44 gene products in bladder tumors and urine cell sediments. Proc Am Assoc Cancer Res 36: 283

    Google Scholar 

  • Merzak A, Koocheckpour S, Pilkington GJ (1994) CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res 54: 3988–3992

    PubMed  CAS  Google Scholar 

  • Miyake K, Underhill CB, Lesley J, Kincade PW (1989) Hyaluronate can function as a cell adhesion molecule and£D44 participates in hyaluronate recognition. J Exp Med 172: 69–75

    Google Scholar 

  • Murakami S, Miyake K, June CH, Kincade PW, Hodes RJ (1990) IL-5 induces a Pgp-1 bright B cell subpopulation that is highly enriched in proliferative and Ig secretory activity and binds hyaluronate. J Immunol 145: 3618–3627

    PubMed  CAS  Google Scholar 

  • Murakami S, Miyake K, Bel R, Kincade PW, Hodes RJ (1991) Characterization of autoantibody secreting B cells in mice stimulatory chronic graft versus host reactions: identification of a CD44 high population that binds specifically to hyaluronate. J Immunol 146: 1422–1427

    PubMed  CAS  Google Scholar 

  • Murakami S, Shimabukuro Y, Miki Y et al (1994) Inducible binding of human lymphocytes to hyaluronate via CD44 does not require cytoskeleton association but does require new protein synthesis. J Immunol 152: 467–477

    PubMed  CAS  Google Scholar 

  • Nagabhushan M, PretlowTG, Guo YJ, Amini SB, PretlowTP, Sy MS (1995) Altered expression of CD44 in prostate cancer metastases (submitted)

    Google Scholar 

  • Nemec RE, Toole BP, Knudson (1987) The cell surface hyaluronate binding sites of invasive human bladder carcinoma cells. Biochem Biophy Res Commun 149: 249–257

    CAS  Google Scholar 

  • Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7: 143–188

    PubMed  CAS  Google Scholar 

  • Nottenburg C, Rees G, St. John T (1989) Isolation of mouse CD44 cDNA: structure features are distinct from the primate cDNA. Proc Natl Acad Sci USA 86: 8521–8525

    PubMed  CAS  Google Scholar 

  • Oyama F, Hiroshashi S, Shimosato Y, Titani K, Sekiguchi K (1989) Deregulation of alternative splicing of fibronectin pre-mRNA in malignant human liver tumors. J Biol Chem 264: 10331–10334

    PubMed  CAS  Google Scholar 

  • Payne LN, Pani PK, Weiss RA (1971) A domain epistatic gene which inhibits cellular susceptibility to RSV. J Gen Virol 13: 455–462

    PubMed  CAS  Google Scholar 

  • Peach RJ, Hollenbaugh D, Stamemkovic I, Aruffo A (1993) Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol 122: 257–264

    PubMed  CAS  Google Scholar 

  • Peacock EEJ (1984) Wound repair, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • Penno MB, August JT, Baylin SB et al (1994) Expression of CD44 in human lung tumors. Cancer Res 54: 1381–1387

    PubMed  CAS  Google Scholar 

  • Perschl A, Lesley J, English N, Trowbridge I, Hyman R (1995) Role of CD44 cytoplasic domain in hyaluronan binding. Eur J Immunol 25: 495–501

    PubMed  CAS  Google Scholar 

  • Philipson LH, Schwartz NB (1984) Subcellular localization of hyaluronate synthetase in oligoden-drocytoma cells. J Biol Chem 259: 5017–5023

    PubMed  CAS  Google Scholar 

  • Picker LJ, Nakache M, Butcher EC (1989) Monoclonal antibodies to human lymphocytes homing receptors define a novel class of adhesion molecules on diverse cell types. J Cell Biol 109: 927–935

    PubMed  CAS  Google Scholar 

  • Poole AR (1986) Proteoglycans in health and disease: structure and functions. Biochem J 236: 1–14

    PubMed  CAS  Google Scholar 

  • Reid T, Flint MH (1974) Changes in glycosaminoglycan content of healing rabbit tendon. J Embryol Exp Morphol 31: 489–495

    PubMed  CAS  Google Scholar 

  • Rothbard JB, Brackenbury R, Cunnigham AB, Edelman GM (1982) Differences in the carbohydrate structures of neural adhesion molecules from adult and embryonic chicken brains. J Biol Chem 257: 11064–11069

    PubMed  CAS  Google Scholar 

  • Rothman BL, Blue M, Kelley KA, Wunderlich D, Mierz DV, Aune TM (1991) Human T cell activation of OKT3 is inhibited by a monoclonal antibody to CD44. J Immunol 147: 2493–2497

    PubMed  CAS  Google Scholar 

  • Rouslahti E (1988) Structure and biology of proteoglycans. Ann Rev Cell Biol 4: 229–255

    Google Scholar 

  • Ruoslahti E, Yamagushi Y (1991) Proteoglycans as modulators of growth factor activities. Cell 64: 867–869

    PubMed  CAS  Google Scholar 

  • Saksela Of Rifkin DB (1990) Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activated mediated proteolytic activity. J Cell Biol 110: 767–775

    PubMed  Google Scholar 

  • Salmi M, Gron-Virta K, Sointu P, Grenman R, Kalimo H, Jalkannen S (1993) Regulated expression of exon V6 containing isoforms of CD44 in man: downregulation during malignant transformation of tumors of squamocellular origin. J Cell Biol 122: 431–442

    PubMed  CAS  Google Scholar 

  • Schauer R (1985) Sialic acids and their role as biological masks. Trends Biochem Sci 10: 357–360

    CAS  Google Scholar 

  • Schwarzbauer JE, Patel RS, Fonda D, Hynes RO (1987) Multiple sites of alternative splicing of the rat fibronectin gene transcripts. EM BO J 6: 2573–2580

    PubMed  CAS  Google Scholar 

  • Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JE (1992) Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 89: 12160–12164

    PubMed  CAS  Google Scholar 

  • Screaton GR, Bell MV, Bell Jl, Jackson D (1993) The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. J Biol Chem 268: 12235–12238

    PubMed  CAS  Google Scholar 

  • Shimizu Y, Seventer GA, Siraganian R, Wahl L, Shaw S (1989) Dual role of the CD44 molecule in T cell adhesion and activation. J Immunol 143: 2457–2463

    PubMed  CAS  Google Scholar 

  • Shtivelman E, Bishop MJ (1991) Expression of CD44 is repressed in neuroblastoma cells. Mol Cell Biol 11; 5446–5453

    PubMed  CAS  Google Scholar 

  • Sieweke MH, Thompson NL, Sporn MB, Bissell MJ (1990) Mediation of wound related Rous sarcoma virus tumorigenesis by TGFB. Science 248: 1656–1660

    PubMed  CAS  Google Scholar 

  • Springer TA (1990) Adhesion receptors of the immune system. Nature 346: 426–434

    Google Scholar 

  • Stamenkovic I, Aminot M, Pesando JM, Seed B (1989) A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56: 1057–1062

    PubMed  CAS  Google Scholar 

  • Stamenkovic I, Aruffo A, Aminot M, Seed B (1991) The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate bearing cells. EMBO 10: 343–348

    CAS  Google Scholar 

  • Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9: 541–573

    PubMed  CAS  Google Scholar 

  • Stoolman LM (1989) Adhesion molecules controlling lymphocytes migration. Cell 56: 907–910

    PubMed  CAS  Google Scholar 

  • Sy MS, Guo YJ, Stamenkovic I (1991) Distinct effects of two CD44 isoforms on tumor growth in vivo. J Exp Med 174: 859–866

    PubMed  CAS  Google Scholar 

  • Sy MS, Guo YJ, Stamenkovic I (1992) Inhibition of tumor growth in vivo with a chimeric CD44-immunoglobulin molecule. J Exp Med 176: 623–627

    PubMed  CAS  Google Scholar 

  • Takeuchi J, Sobue M, Sato E, Yoshida M, Uchibori N, Miura K (1981) A high level of glycosaminoglycan synthesis of squamous cell carcinoma of the parotid eland. Cancer 47: 2030–2035

    PubMed  CAS  Google Scholar 

  • Tan PHS, Santos EB, Rossbach HC, Sandmaier BM (1993) Enhancement of natural killer activity by an antibody to CD44. J Immunol 150: 812–820

    PubMed  CAS  Google Scholar 

  • Tanabe KK, Ellis LM, Saya H (1993) Expression of CD44R1 adhesion molecule in colon carcinomas and metastasis. Lancet 341: 725–726

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S (1993) T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1B. Nature 361: 79–82

    PubMed  CAS  Google Scholar 

  • Thomas LJ, DeGasperi R, Sugiyama E et al (1991) Functional analysis of T cell mutants defective in the biosynthesis of glycosyl phosphatidylinositol anchor. J Biol Chem 266: 23175–23184

    PubMed  CAS  Google Scholar 

  • Thomas L, Byers HR, Vink J, Stamenkovic I (1992) CD44H regulates tumor cell migration of hyaluronate coated substrate. J Cell Biol: 971–991

    Google Scholar 

  • Tolg C, Hofmann M, Herrlich P, Ponta H (1993) Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res 21: 1225–1229

    PubMed  CAS  Google Scholar 

  • Toole BP (1990) Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 2: 839–844

    PubMed  CAS  Google Scholar 

  • Toole BP, Biswas C, Gross J (1979) Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc Natl Acad Sci USA 76: 6299–6303

    PubMed  CAS  Google Scholar 

  • Trowbridge IS, Lesley J, Schulte R, Trotter J (1982) Biochemical characterization and cellular dis-tribution of a polymorphic, murine cell surface glycoprotein expressed on lymphoid tissues. Immunogenetics 15: 299–312

    PubMed  CAS  Google Scholar 

  • Tsujisaki M, Imai K, Hirata H et al (1991) Detection of circulating intercellular adhesion molecule 1 antigen in malignant diseases. Clin Exp Immunol 85: 3–8

    PubMed  CAS  Google Scholar 

  • Turley EA (1984) Proteoglycans and cell adhesion: their putative role during tumorigenesis. Cancer Metastasis Rev 3: 325–339

    PubMed  CAS  Google Scholar 

  • Underhill CH, Dorfman A (1978) The role of hyaluronic acid in intercellular adhesion of cultured mouse cells. Exp Cell Res 117: 155–164

    PubMed  CAS  Google Scholar 

  • Underhill CB, Toole BP (1982) Transformation-dependent loss of the hyaluronate containing coats of cultured cells. J Cell Physiol 110: 123–128

    PubMed  CAS  Google Scholar 

  • Underhill CB (1982) Interaction of hyaluronate with the surface of simian virus 40-transformed 3T3 cells: aggregation and binding studies. J Cell Sci 56L: 177–189

    Google Scholar 

  • Webb DSS, Shimizu Y, Van Seventer GA, Shaw S, Gerrard TL (1990) LFA-3, CD44 and CD45: Physiologic triggers of human monocyte TNF and IL-1 release. Science 249: 1295–1297

    PubMed  CAS  Google Scholar 

  • West DC, Sattar A, Kumar S (1985) Angiogenesis induced by the degradation products of hyaluronic acid. Science 228: 1324–1326

    PubMed  CAS  Google Scholar 

  • Wielenga VJM, Heider K-H, Offerhaus GJA et al. (1993) Expression of CD44 variant proteins in humal colorectal cancer is related to tumor progression. Cancer Res 53: 4754–4756

    PubMed  CAS  Google Scholar 

  • Wolffe EJ, Cause WC, Pelfrey CM, Holland SM, Steinberg AD, August JT (1990) The cDNA sequence of mouse Pgp-1 and to human CD44 cell surface antigen and proteoglycan core/link proteins. J Biol Chem 265: 341–352

    PubMed  CAS  Google Scholar 

  • Woodland H, Jones L (1988) Growth factors in amphibian cell differentiation. Nature 332: 113–115

    PubMed  CAS  Google Scholar 

  • Zhou DF, Ding JF, Picker LJ, Bargatze RF, Butcher EC, Goeddel DV (1989) Molecular cloning and expression of Pgp-1. The mouse homolog of the human H-CAM (Hermes) lymphocyte homing receptor. J Immunol 143: 3390–3395

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sy, M.S., Liu, D., Schiavone, R., Ma, J., Mori, H., Guo, Y. (1996). Interactions Between CD44 and Hyaluronic Acid: Their Role in Tumor Growth and Metastasis. In: Günthert, U., Schlag, P.M., Birchmeier, W. (eds) Attempts to Understand Metastasis Formation III. Current Topics in Microbiology and Immunology, vol 213/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80071-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80071-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80073-3

  • Online ISBN: 978-3-642-80071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics