Advertisement

Sources of Atomic and Molecular Beams

  • Marian A. Herman
  • Helmut Sitter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 7)

Abstract

The application of MBE to the growth of compound semiconductors of devices and monolithic circuits requires excellent film uniformity and reproducibility of growth conditions [2.1–7]. The uniformity in thickness, as well as in composition, of films grown by MBE depends on the uniformity of the molecular beams across the substrate. As already discussed (Sect. 1.1.2), the uniformity of the molecular beam patterns upon the substrate depends on the geometry of the “sources-substrate” system, and on the angular flux distribution of the individual sources in the system. The best uniformity of beam patterns is obtained with a sufficiently large source-to-substrate spacing, and with flux distributions at the source orifices which are isotropic in the solid angle subtended by the substrate [2.8]. The reproducibility of the growth process depends, on the other hand, on the long term stability of the beam fluxes, as well as on the flux transients resulting from the shutter operations, e.g., from cooling of the surface of the charge contained in the source upon shutter opening [2.9].

Keywords

Molecular Beam Evaporation Rate Flux Distribution Effusion Rate Beam Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    W.T. Tsang: Semiconductor lasers and photodetectors by molecular beam epitaxy in [2.20, 21]Google Scholar
  2. 2.2
    K. Alavi, A.Y. Cho, F. Capasso, J. Alam: J. Vac. Sci. Technol. B 5, 802 (1987)CrossRefGoogle Scholar
  3. 2.3
    H.T. Griem, K.H. Hsieh, I.J. D’Haenens, M.J. Delaney, J.A. Henige, G.H. Wicks, A.S. Brown: J. Vac. Sci. Technol. B 5, 785 (1987)CrossRefGoogle Scholar
  4. 2.4
    S. Hiyamizu, T. Fujii, S. Muto, T. Inata, Y. Nakata, Y. Sugiyama, S. Sasa: J. Cryst. Growth 81, 349 (1987)CrossRefGoogle Scholar
  5. 2.5
    F. Alexandre, J.C. Harmand, J.L. Lievin, C. Dubon-Chevallier, D. Ankri, C. Minot, J.F. Planner: J. Cryst. Growth 81, 391 (1987)CrossRefGoogle Scholar
  6. 2.6
    L. Goldstein, J.P. Praseuth, M.C. Joncour, J. Primot, P. Henoc, J.L. Pelouard, P. Hesto: J. Cryst. Growth 81, 396 (1987)CrossRefGoogle Scholar
  7. 2.7
    N. Koguchi, T. Kiyosawa, S. Takahashi: J. Cryst. Growth 81, 400 (1987)CrossRefGoogle Scholar
  8. 2.8
    P.A. Maki, S.C. Palmateer, A.R. Calawa, B.R. Lee: J. Electrochem. Soc. 132, 2813 (1985)CrossRefGoogle Scholar
  9. 2.9
    P.A. Maki, S.C. Palmateer, A.R. Calawa, B.R. Lee: J. Vac. Sci. Technol. B 4, 564 (1986) R. Fernandez, A. Harwit, D. Kinell: J. Vac. Sci. Technol. B 12, 1023 (1994)CrossRefGoogle Scholar
  10. 2.10
    J.H. Neave, P.K. Larsen, J.F. van der Veen, P.J. Dobson, B.A. Joyce: Surf. Sci. 133, 267 (1983) J.P.R. David, M. Hopkinson, P.N. Stavrinou, S.K. Haywood: J. Appl. Phys. 78, 3330 (1995) J. Massies, M. Leroux, Y. Martinez, P. Vennegues, S. Laügt: J. Cryst. Growth 160, 211 (1996)CrossRefGoogle Scholar
  11. 2.11
    B.A. Joyce: Rep. Prog. Phys. 48, 1637 (1985)CrossRefGoogle Scholar
  12. 2.12
    R. Chow, Y.G. Chai: J. Vac. Sci. Technol. A 1, 49 (1983)CrossRefGoogle Scholar
  13. 2.13
    M.B. Panish: Prog. Cryst. Growth Charact. 12, 1 (1986)CrossRefGoogle Scholar
  14. 2.14
    J.T. Cheung: Appl. Phys. Lett. 51, 1940 (1987)CrossRefGoogle Scholar
  15. 2.15
    L.I. Maissei, R. Glang (eds.): Handbook of Thin Film Technology (McGraw-Hill, New York 1970)Google Scholar
  16. 2.16
    H. Hertz: Arm. Phys. 17, 177 (1882)Google Scholar
  17. 2.17
    M. Knudsen: Ann. Phys. (Leipzig) 47, 697 (1915)Google Scholar
  18. 2.18
    I. Langmuir: Phys. Z. 14, 1273 (1913)Google Scholar
  19. 2.19
    M. Knudsen: Ann. Phys. (Leipzig) 29, 179 (1909)Google Scholar
  20. 2.20
    L.L. Chang, K. Ploog (eds): Molecular Beam Epitaxy and Heterostructures, NATO ASI Ser., Ser. E, no. 87 (Nijhoff, Dordrecht 1985)Google Scholar
  21. 2.21
    E.H.C. Parker (ed.): The Technology and Physics of Molecular Beam Epitaxy (Plenum, New York 1985)Google Scholar
  22. 2.22
    C.T. Foxon, J.A. Harvey, B.A. Joyce: J. Phys. Chem. Solids 34, 1693 (1973)CrossRefGoogle Scholar
  23. 2.23
    R.F.C. Farrow: J. Phys. D 7, 2436 (1974)CrossRefGoogle Scholar
  24. 2.24
    E. Rutner: In Condensation and Evaporation of Solids ed. by E. Rutner, P. Goldfinger, J.P. Hirth (Gordon and Breach, New York 1964) p. 149Google Scholar
  25. 2.25
    K. Ploog: Molecular beam epitaxy of III-V compounds, in Crystals-Growth, Properties and Applications, Vol. 3, ed. by H.C. Freyhardt (Springer, Berlin, Heidelberg 1980) p. 73Google Scholar
  26. 2.26
    J.A. Curless: J. Vac. Sci. Technol. B 3, 531 (1985)CrossRefGoogle Scholar
  27. 2.27
    T. Yamashita, T. Tornita, T. Sakurai: Jpn. J. Appl. Phys. 26, 1192 (1987)CrossRefGoogle Scholar
  28. 2.28
    P. Clausing: Z. Physik 66, 471 (1930)CrossRefGoogle Scholar
  29. 2.29
    P. Clausing: Ann. Phys. (Leipzig) 12, 961 (1932)Google Scholar
  30. 2.30
    W.L. Winterbottom, J.P. Hirth: J. Chem. Phys. 37, 784 (1962)CrossRefGoogle Scholar
  31. 2.31
    V. Ruth, J.P. Hirth: The angular distribution of vapor flowing from a Knudson Cell, in Condensation and Evaporation of Solids, ed. by E. Rutner, P. Goldfinger, J.P. Hirth (Gordon and Breach, New York 1964) p. 99Google Scholar
  32. 2.32
    K. Motzfeldt: J. Phys. Chem. 59, 139 (1955)CrossRefGoogle Scholar
  33. 2.33
    B.B. Dayton: Gas glow patterns at entrance and exit of cylindrical tubes, in 1956 National Symposium on Vacuum Technology Transactions, ed. by E.S. Perry, J.H. Durant (Pergamon, Oxford 1957) p. 5Google Scholar
  34. 2.34
    M.A. Herman: Vacuum 32, 555 (1982)CrossRefGoogle Scholar
  35. 2.35
    P.E. Luscher, D.M. Collins: Prog. Cryst. Growth Charact. 2, 15 (1979)CrossRefGoogle Scholar
  36. 2.36
    W.H. Bröhl, H. Hartmann: Vacuum 31, 117 (1981)CrossRefGoogle Scholar
  37. 2.37
    N.F. Ramsey: Molecular Beams (Oxford Univ. Press, Oxford 1956)Google Scholar
  38. 2.38
    W. Steckelmacher: Rep. Prog. Phys. 49, 1083 (1986)CrossRefGoogle Scholar
  39. 2.39
    P. Krasuski: J. Vac. Sci. Technol. A 5, 2488 (1987)CrossRefGoogle Scholar
  40. 2.40
    J. Humenberger, H. Sitter: Proc. 7th Int’l Conf. Thin films, New Dehlhi 1987, to be published in Thin Solid Films (1988)Google Scholar
  41. 2.41
    J.K. Haviland, M.L. Levin: Phys. Fluids 5, 1399 (1962)CrossRefGoogle Scholar
  42. 2.42
    D.L. Miller, G.J. Sullivan: J. Vac. Sci. Technol. B 5, 1377 (1987)CrossRefGoogle Scholar
  43. 2.43
    L.Y.L. Shen: J. Vac. Sci. Technol. 15, 10 (1978)CrossRefGoogle Scholar
  44. 2.44
    S. Adamson, C.O. Carroll, J.F. McGilp: J. Vac. Sci. Technol. B 7, 487 (1989)CrossRefGoogle Scholar
  45. 2.45
    Z.R. Wasilewski, G.C. Aers, A.J. Spring-Thorpe, C.J. Miner: J. Vac. Sci. Technol. B 9, 120 (1991)CrossRefGoogle Scholar
  46. 2.46
    L. Michalak, B. Adamczyk, M.A. Herman: Vacuum 43, 341 (1992)CrossRefGoogle Scholar
  47. 2.47
    G.C. Aers, Z.R. Wasilewski: J. Vac. Sci. Technol. B 10, 815 (1992)CrossRefGoogle Scholar
  48. 2.48
    G.J. Davies, D. Williams: III-V MBE growth-systems, in [Ref. 2.21; p. 15] G.M. Minchev, M. Eddrief, L.M. Trendafilov, H.M. Naradikian, K.L. Trendafilov: Vacuum 47, 157 (1996) Y. Rouillard, B. Lambert, Y. Toudic, M. Baudet, M. Gauneau: J. Cryst. Growth 156, 30 (1995)Google Scholar
  49. 2.49
    R.A.A. Kubiak, E.H.C. Parker, S.S. Lyer: Si-MBE growth systemstechnology and practice, in Silicon Molecular Beam Epitaxy, ed. by E. Kasper, J.C. Bean (CRC, Boca Raton, FL 1988) Chap. 2Google Scholar
  50. 2.50
    J.T. Cheung, J. Madden: J. Vac. Sci. Technol. B 5, 705 (1987)CrossRefGoogle Scholar
  51. 2.51
    R.J. Malik: J. Vac. Sci. Technol. B 5, 722 (1987)CrossRefGoogle Scholar
  52. 2.52
    R.L. Lee, W.J. Schaffer, Y.G. Chai, D. Liu, J.S. Harris: J. Vac. Sci. Technol. B 4, 568 (1986)CrossRefGoogle Scholar
  53. 2.53
    B.S. Krusor, R.Z. Bachrach: J. Vac. Sci. Technol. B 1, 138 (1983)CrossRefGoogle Scholar
  54. 2.54
    C.R. Stanley, R.F.C. Farrow, P.W. Sullivan: MBE of InP and other P-containing Compounds, in [2.21; Chap. 9] C.E.C. Wood, F.G. Johnson: J. Appl. Phys. 78, 4444 (1995)Google Scholar
  55. 2.55
    J.B. Clegg, F. Grainger, I.G. Gale: J. Mater. Sci. 15, 747 (1980)CrossRefGoogle Scholar
  56. 2.56
    R.F.C. Farrow, G.M. Williams: Thin Solid Films 55, 303 (1978)CrossRefGoogle Scholar
  57. 2.57
    V.A. Borodin, V.V. Sidorov, T.A. Steriopolo, V.A. Tatarchenko: J. Cryst. Growth 82, 89 (1987)CrossRefGoogle Scholar
  58. 2.58
    C. Chatillon, M. Allibert, A. Pattoret: Adv. Mass Spectrosc. 7 A, 615 (1978)Google Scholar
  59. 2.59
    T.H. Myers, J.F. Schetzina: J. Vac. Sci. Technol. 20, 134 (1982)CrossRefGoogle Scholar
  60. 2.60
    S.C. Jackson, B.N. Baron, R.E. Rocheleau, T.W.F. Russell: J. Vac. Sci. Technol. A 3, 1916 (1985)CrossRefGoogle Scholar
  61. 2.61
    J.P. Faurie: J. Cryst. Growth 81, 483 (1987)CrossRefGoogle Scholar
  62. 2.62
    H.F. Schaake (ed.): Proc. 1986 (.S. Workshop on the Phys. Chem. Mercury Cadmium Telluride, in J. Vac. Sci. Technol. A 5, no. 5 (1987)Google Scholar
  63. 2.63
    M.A. Herman, M. Pessa: J. Appl. Phys. 57, 2671 (1985)CrossRefGoogle Scholar
  64. 2.64
    R.F.C. Farrow, G.R. Jones, G.M. WiUiams, P.W. Sullivan, W.J.O. Boyle, J.T.M. Wotherspoon: J. Phys. D 12, L117 (1979)CrossRefGoogle Scholar
  65. 2.65
    T. Yao: MBE of II-VI compounds, in [Ref. 2.21; Chap. 10]Google Scholar
  66. 2.66
    J.M. Arias, S.H. Shin, J.T. Cheung, J.S. Chen, S. Sivananthan, J. Reno, J.P. Faurie: J. Vac. Sci. Technol. A 5, 3133 (1987)CrossRefGoogle Scholar
  67. 2.67
    K.A. Harris, S. Hwang, D.K. Blanks, J.W. Cook Jr., J.F. Schetzina, N. Otsuka: J. Vac. Sci. Technol. A 4, 2061 (1986)CrossRefGoogle Scholar
  68. 2.68
    M.B. Panish, R.A. Hamm: J. Cryst. Growth 78, 445 (1986)CrossRefGoogle Scholar
  69. 2.69
    R.F.C. Farrow, P.W. Sullivan, G.M. Williams, C.R. Stanley: Collected Papers of 2nd Int’l Symp. MBE and Related Clean Surface Techniques, Tokyo 1982 (Jpn. Soc. Appl. Phys., Tokyo 1982) p. 169Google Scholar
  70. 2.70
    T. Henderson, W. Kopp, R. Fischer, J. Klem, H. Morkoç, L.P. Erickson, P.W. Palmberg: Rev. Sci. Instrum. 55, 11 (1984)CrossRefGoogle Scholar
  71. 2.71
    D. Huet, M. Lambert, D. Bonnevie, D. Dufresne: J. Vac. Sci. Technol. B 3, 823 (1985)CrossRefGoogle Scholar
  72. 2.72
    L.P. Erickson, T.J. Mattord, P.W. Palmberg, R. Fischer, H. Morkoç: Electron. Lett 19, 632 (1983)CrossRefGoogle Scholar
  73. 2.73
    M.B. Panish, S. Sumski: J. Appl. Phys. 55, 3517 (1984)CrossRefGoogle Scholar
  74. 2.74
    L.W. Kapitan, C.W. Litton, G.C. Clark, P.C. Colter: J. Vac. Sci. Technol. B 2, 280 (1984)CrossRefGoogle Scholar
  75. 2.75
    J.C. Garcia, A. Barski, J.P. Contour, J. Massies: Appl. Phys. Lett. 51, 593 (1987)CrossRefGoogle Scholar
  76. 2.76
    E. Kasper: Appl. Phys. A 28, 129 (1982)CrossRefGoogle Scholar
  77. 2.77
    U. König, H. Kibbel, E. Kasper: J. Vac. Sci. Technol. 16, 985 (1979)CrossRefGoogle Scholar
  78. 2.78
    Y. Ota: Thin Solid Films 106, 3 (1983)CrossRefGoogle Scholar
  79. 2.79
    Y. Ota: J. Electrochem. Soc. 124, 1795 (1977)CrossRefGoogle Scholar
  80. 2.80
    J.C. Bean, J. M. Poate: Appl. Phys. Lett. 37, 643 (1980)CrossRefGoogle Scholar
  81. 2.81
    R.T. Tung, J.M. Poate, J.C. Bean, J.M. Gibson, D.C. Jacobson: Thin Solid Films 93, 77 (1982)CrossRefGoogle Scholar
  82. 2.82
    M. Tacano, Y. Sugiyama, M. Ogura, M. Kawashima: Collected Papers of 2nd Int. Symp. MBE and Related Clean Surface Techniques, Tokyo 1982 (Jpn. Soc. Appl. Phys. Tokyo 1982) p. 125Google Scholar
  83. 2.83
    L. Ramberg, E. Flemming, T.G. Andersson: J. Vac. Sci. Technol. A 4, 141 (1986)CrossRefGoogle Scholar
  84. 2.84
    J.T. Cheung, G. Niizawa, J. Moyle, N.P. Ong, B.M. Paine, T. Vreeland, Jr.: J. Vac. Sci. Technol. A 4, 2086 (1986)CrossRefGoogle Scholar
  85. 2.85
    F.J. Morris, H. Fukui: J. Vac. Sci. Technol. 11, 506 (1974)CrossRefGoogle Scholar
  86. 2.86
    M.B. Panish: J. Electrochem. Soc. 127, 2729 (1980)CrossRefGoogle Scholar
  87. 2.87
    W.T. Tsang: J. Eectron. Mater. 15, 235 (1986) S. Goto, Y. Nomura, Y. Morishita, Y. Katayama, H. Ohno: J. Cryst. Growth 149, 143 (1995) S. Yoshida, M. Sasaki: J. Cryst. Growth 151, 220 (1995); ibid 152, 347 (1995); ibid 156, 11 (1995)CrossRefGoogle Scholar
  88. 2.88
    H. Ando, A. Taike, R. Kimura, M. Konagai, K. Takahashi: Jpn. J. Appl. Phys. 25, L279 (1986)CrossRefGoogle Scholar
  89. 2.89
    M.B. Panish: J. Cryst. Growth 81, 249 (1987)CrossRefGoogle Scholar
  90. 2.90
    M.B. Panish, H. Temkin: Gas Source Molecular Beam Epitaxy — Growth and Properties of Phosphorus Containing III-V Heterostructures, Vol. 26 Springer Ser. Mater. Sci. (Springer, Berlin, Heidelberg 1993)Google Scholar
  91. 2.91
    A.R. Calawa: Appl. Phys. Lett. 38, 701 (1981)CrossRefGoogle Scholar
  92. 2.92
    J.H. Quigley, M.J. Hafich, H.Y. Lee, R.E. Stave, G.Y. Robinson: J. Vac. Sci. Technol. B 7, 358 (1989)CrossRefGoogle Scholar
  93. 2.93
    K. Ozasa, M. Yuri, S. Tanaka, H. Matsunami: J. Cryst. Growth 95, 171 (1989)CrossRefGoogle Scholar
  94. 2.94
    D. Ritter, M.B. Panish, R.A. Hamm, D. Gershoni, I. Breuer: Appl. Phys. Lett. 56, 1448 (1990)CrossRefGoogle Scholar
  95. 2.95
    A.S. Jordan, A. Robertson: J. Cryst. Growth 128, 488 (1993)CrossRefGoogle Scholar
  96. 2.96
    L.M. Fraas, P.S. McLeod, R.E. Weiss, L.D. Partain, J.A. Cape: J. Appl. Phys. 62, 299 (1987)CrossRefGoogle Scholar
  97. 2.97
    T.B. Joyce, T.J. Bullough: J. Cryst. Growth 127, 265 (1993)CrossRefGoogle Scholar
  98. 2.98
    T.B. Joyce: J. Cryst. Growth 105, 299 (1990)CrossRefGoogle Scholar
  99. 2.99
    T.B. Joyce, T.J. Bullough, P. Kightley, C.J. Kiely, Y.R. Xing, P.J. Goodhew: J. Cryst. Growth 120, 206 (1992)CrossRefGoogle Scholar
  100. 2.100
    R.D. Dupuis: Science 226, 623 (1984)CrossRefGoogle Scholar
  101. 2.101
    C.A. Coronado, E. Ho, L.A. Kolodziejski: J. Cryst. Growth 127, 323 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Marian A. Herman
    • 1
    • 2
  • Helmut Sitter
    • 3
  1. 1.Institute of PhysicsPolish Academy of SciencesWarszawaPoland
  2. 2.Institute of Vacuum TechnologyWarszawaPoland
  3. 3.Institut für ExperimentalphysikJohannes Kepler UniversitätLinz/AuhofAustria

Personalised recommendations