Advertisement

T Cell Subsets and the Activation of γδ T Cells

  • T. P. Arstila
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 212)

Abstract

The T cell subsets in chicken are, in most respects, similar to those in mouse or human (Cooper et al. 1991; Arstila et al. 1994a). As in mammals, mature αβ T cells express either CD4 or CD8. The CD4+ αβ T cells function as helper T cells, recognizing antigens in a MHC class II-restricted way and producing cytokines upon activation (Chan et al. 1988). The αβ T cells expressing CD8 are poor producers of cytokines but exhibit T cell receptor (TCR)-dependent cytotoxicity. The αβ T cells can also be divided into two subsets on the basis of the Vβ gene segment utilized (Tjoelker et al. 1990; Lahti et al. 1991). There are two families of V genes in the TCR β locus, both containing several gene segments, and both subsets can be detected by a monoclonal antibody (Chen et al. 1988; Cihak et al. 1988; Char et al. 1990). Some studies have indicated differences between cells expressing Vβ1 or Vβ2 gene segments. For example, Vβ1+ cells are numerous in the intestinal epithelium and can support IgA responses. In contrast, Vβ2+ cells are rare in the intestinal epithelium and, either because of this or because of an unknown functional characteristic, are unable to provide help for IgA responses (Cihak et al. 1991).

Keywords

Cell Subset Gene Segment Costimulatory Signal Mycobacterial Antigen Chicken CD28 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arstila TP, Lassila O (1993) Androgen-induced expansion of the peripheral blood yö T cell population in the chicken. J Immunol 151: 6627–6633PubMedGoogle Scholar
  2. Arstila TP, Toivanen P, Lassila O (1993) Helper activity of CD4+ αβ T cells is required for the avian yä T cell response. Eur J Immunol 23: 2034–2037PubMedCrossRefGoogle Scholar
  3. Arstila TP, Vainio O, Lassila O (1994a) Central role of CD4+ T cells in avian immune response. Poultry Sci 73: 1019–1026Google Scholar
  4. Arstila TP, Vainio O, Lassila O (1994b) Evolutionarily conserved function of CD28 in αβ T cell activation. Scand. J Immunol 40: 368–371CrossRefGoogle Scholar
  5. Arstila TP, Toivanen P, Vainio O, Lassila O (1994c) yöand αβ T cells are equally susceptible to apoptosis. Scand J Immunol 40: 209–215CrossRefGoogle Scholar
  6. Arstila TP, Toivanen P, Lassila O (1995) Primed avian yö T cells respond to mycobacterial antigens, but show no preference for the 65-kDa heat shock protein. Cell Immunol 162: 74–79PubMedCrossRefGoogle Scholar
  7. Bucy RP, Chen CH, Cihak J, Lösch U, Cooper MD (1988) Avian T cells expressing y8 receptors localize in the splenic sinusoids and the intestinal epithelium. J Immunol 141: 2200–2205PubMedGoogle Scholar
  8. Chan MM, Chen CH, Ager LL, Cooper MD (1988) Identification of the avian homologues of mammalian CD4 and CD8 antigens. J Immunol 140: 2133–2138PubMedGoogle Scholar
  9. Char D, Sanchez P, Chen CH, Bucy RP, Cooper MD (1990) A third sublineage of avian T cells can be identified with a T cell receptor- 3-specific antibody. J Immunol 145: 3547–3555PubMedGoogle Scholar
  10. Chen CH, Cihak J, Lösch U, Cooper MD (1988) Differential expression of two T cell receptors, TcR1 and TcR2, on chicken lymphocytes. Eur J Immunol 18: 539–543PubMedCrossRefGoogle Scholar
  11. Cihak J, Ziegler-Heitbrock HWL, Trainer H, Schranner I, Merkenschlager M, Lösch U (1988) Characterization and functional properties of a novel monoclonal antibody which identifies a T cell receptor in chickens. Eur J Immunol 18: 533–537PubMedCrossRefGoogle Scholar
  12. Cihak J, Hoffmann-Fezer G, Ziegler-Heibrock HWL, Stein H, Kaspers B, Chen CH, Cooper MD, Lösch U (1991) T cells expressing the Vβ1 T-cell receptor are required for IgA production in the chicken. Proc Natl Acad Sci USA 88: 1 0951–1 0955Google Scholar
  13. Constant P, Davodeau F, Peyrat M-A, Poquet Y, Puzo G, Bonneville M, Fournie J-J (1994) Stimulation of human yó T cells by nonpeptidic mycobacterial ligands. Science 264: 267–270PubMedCrossRefGoogle Scholar
  14. Cooper MD, Chen CH, Bucy RP, Thompson CB (1991) Avian T cell ontogeny. Adv Immunol 50: 87–117PubMedCrossRefGoogle Scholar
  15. Fraser JD, Irving BA, Crabtree GR, Weiss A (1991) Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251: 313–316PubMedCrossRefGoogle Scholar
  16. Haregewoin AG, Soman G, Horn CR, Finberg RW (1989) Human y/ö T cells respond to mycobacterial heat-shock protein. Nature 340: 309–312PubMedCrossRefGoogle Scholar
  17. Janis EM, Kaufmann SHE, Schwartz RH, Pardoll DM (1989) Activation of y/ö T cells in the primary immune response to Mycobacterium tuberculosis. Science 244: 713–716PubMedCrossRefGoogle Scholar
  18. Kabelitz D, Bender A, Schondelmaier S, Schoel B, Kaufmann SHE (1990) A large fraction of human peripheral blood 7/8 T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med 171: 667–679PubMedCrossRefGoogle Scholar
  19. Kasahara Y, Chen CH, Cooper MD (1993) Growth requirements for avian yö T cells include exogenous cytokines, receptor ligation and in vivo priming. Eur J Immunol 23: 2230–2236PubMedCrossRefGoogle Scholar
  20. Kaufmann SHE, Blum C, Yamamoto S (1993) Crosstalk between a/ß T cells and y/6 T cells in vivo: activation of a/(3 T cell responses after y/8 T cell modulation with the monoclonal antibody GL3. Proc Natl Acad Sci USA 90: 9620–9624PubMedCrossRefGoogle Scholar
  21. Lahti JM, Chen CH, Tjoelker LW, Pickel JM, Schat KA, Calnek BW, Thompson CB, Cooper MD (1991) Two distinct αβ T-cell lineages can be distinguished by the differential usage of T-cell receptor Vß gene segments. Proc Natl Acad Sci USA 88: 10956–10960PubMedCrossRefGoogle Scholar
  22. Lindsten T, June CH, Ledbetter JA, Stella G, Thompson CB (1989) Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244: 339–343CrossRefGoogle Scholar
  23. Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11: 191–212PubMedCrossRefGoogle Scholar
  24. Mombaerts P, Arnoldi J, Russ F, Tonegawa S, Kaufmann SHE (1993) Different roles of αβ and y8T cells in immunity against an intracellular bacterial pathogen. Nature 365: 53–56PubMedCrossRefGoogle Scholar
  25. Ohteki T, MacDonald HR (1993) Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes correlates withlineage and responsiveness. Eur J Immunol 23: 1251–1255PubMedCrossRefGoogle Scholar
  26. O’Brien RL, Fu Y-X, Cranfill R, Dallas A, Ellis C, Reardon C, Lang J, Carding SR, Kubo R, Born W (1992) Heat shock protein Hsp60-reactive yS cells: a large, diversified T-lymphocyte subset with highly focused specificity. Proc Natl Acad Sci USA 89: 4348–4352PubMedCrossRefGoogle Scholar
  27. Pechhold K, Wesch D, Schondelmaier S, Kabelitz D (1994) Primary activation of Vy9-expressing yS T cells by Mycobacterium tuberculosis. Requirement for Th1-type CD4 T cell help and inhibition by IL-10. J Immunol 152: 4984–4992PubMedGoogle Scholar
  28. Pfeffer K, Schoel B, Gulle H, Kaufmann SHE, Wagner H (1990) Primary responses of human T cells to mycobacteria: a frequent set of y/8 T cells are stimulated by protease resistant ligands. Eur J Immunol 1175–1179Google Scholar
  29. Rock EP, Sibbald PR, Davis MM, Chien Y-H (1994) CDR3 length in antigen-specific immune receptors. J Exp Med 179: 985–989CrossRefGoogle Scholar
  30. Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM, Bluestone JA, Matis L, Draper RK, Chien Y-H (1994) The nature of major histocompatibility complex recognition by yS T cells. Cell 76: 29–37PubMedCrossRefGoogle Scholar
  31. Sowder JT, Chen CH, Ager LL, Chan MM, Cooper MD (1988) A large subpopulation of avian T cells express a homologue of the mammalian Ty/8 receptor. J Exp Med 167: 315–322PubMedCrossRefGoogle Scholar
  32. Tjoelker LW, Carlson LM, Lee K, Lahti J, McCormack WT, Leiden JM, Chen CH, Cooper MD, Thompson CB (1990) Evolutionary conservation of antigen recognition: the chicken T cell receptor 13 chain. Proc Natl Acad Sci USA. 87: 7856–7860PubMedCrossRefGoogle Scholar
  33. Tsuji M, Mombaerts P, Lefrancois L, Nussenzweig RS, Zavala F, Tonegawa S (1994) yS T cells contribute to immunity against the liver stages of malaria in αβ T-cell-deficient mice. Proc Natl Acad Sci USA 91: 345–349PubMedCrossRefGoogle Scholar
  34. Vainio O, Veromaa T, Eerola E, Toivanen P, Ratcliffe MJH (1988) Antigen-presenting cell-T cell interaction in the chicken is MHC class lI antigen restricted. J Immunol 140: 2864–2868PubMedGoogle Scholar
  35. Vainio O, Riwar B, Brown MH, Lassila O (1991) Characterization of the putative avian CD2 homologue. J Immunol 147: 1593–1599PubMedGoogle Scholar
  36. Young JR, Davison TF, Tregaskes CA, Rennie MC, Vainio O (1994) A monomeric homologue of mammalian CD28 is expressed on chicken T cells. J Immunol 152: 3848–3851PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • T. P. Arstila
    • 1
  1. 1.Department of Medical MicrobiologyTurku UniversityTurkuFinland

Personalised recommendations