Strategies to minimize Alveolar Stretch Injury during Mechanical Ventilation

  • N. R. MacIntyre
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1996)


The potential for positive pressure breaths to injure the lungs has long been appreciated. The best known form of injury occurs when positive pressure breaths grossly overinflate the lungs and result in pneumothorax, pneumomediastinum, subcutaneous emphysema, and other forms of “volutrauma” or “barotrauma” [1–4]. The mechanism for this type of injury is thought to be actual alveolar rupture into the perivascular space with subsequent dissection of air into the mediastinum, pleura and other locations [3–5]. The risk for alveolar overdistension and rupture becomes clinically significant when transalveolar pressures exceed the normal maximum and approach 50–60 cm H2O (Fig. 1).


Tidal Volume Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit High Frequency Oscillatory Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACCP Consensus Group (1993) Mechanical ventilation. Chest 104: 1833–1859CrossRefGoogle Scholar
  2. 2.
    American Association for Respiratory Care (1992) Consensus on essentials of mechanical ventilation. Respir Care 37: 1000–1009Google Scholar
  3. 3.
    Samuelson WM, Fulkerson WF (1991) Barotrauma in mechanical ventilation. Prob Respir Care 4: 52–67Google Scholar
  4. 4.
    Steier M, Ching N, Roberts E, et al (1974) Pneumothorax complicating continuous ventilator support. J Thorac Cardiovasc Surg 67: 17–23PubMedGoogle Scholar
  5. 5.
    Macklin M, Macklin C (1950) Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions. Medicine 23: 281–358Google Scholar
  6. 6.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure. Protection by positive end-expiratory pressure. Am Rev Respir Dis 199: 556–565Google Scholar
  7. 7.
    Corbridge TC, Wood LD, Crawford GP, Chudoba JR, Yanes J, Sznajder JL (1990) Adverse effects of large tidal volume and low PEEP in canrin acid aspiration. Am Rev Respir Dis 142: 311–315PubMedGoogle Scholar
  8. 8.
    Hernandez LA, Coker PJ, May S, Thompson AL, Parker JC (1990) Mechanical ventilation increases microvascular permeability in oleic acid injured lungs. J Appl Physiol 69: 2057–2061PubMedGoogle Scholar
  9. 9.
    Kolobow T, Moretti MP, Fumagalli R et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315PubMedGoogle Scholar
  10. 10.
    Mascheroni D, Kolobow T, Fumagalli R, et al (1988) Acute respiratory failure following pharmacologically-induced hyperventilation: An experimental animal study. Intensive Care Med 15: 8–14PubMedCrossRefGoogle Scholar
  11. 11.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Am Rev Respir Dis 137: 1159–1164PubMedGoogle Scholar
  12. 12.
    Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884PubMedGoogle Scholar
  13. 13.
    Bowton DL, Kong DL (1989) High tidal volume ventilation produces increased lung water in oleic acid injured rabbit lungs. Crit Care Med 17: 908–911PubMedCrossRefGoogle Scholar
  14. 14.
    Parker JC, Townsley MI, Rippe B, et al (1984) Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 57: 1809–1816PubMedGoogle Scholar
  15. 15.
    Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21: 131–143PubMedCrossRefGoogle Scholar
  16. 16.
    Parker JC, Hernandez LA, Longenecker GL, Peevy K, Johnson W (1990) Lung edema caused by high peak inspiratory pressures in dogs. Am Rev Respir Dis 142: 321–328PubMedGoogle Scholar
  17. 17.
    Tsuno K, Prato P, Kolobow T (1990) Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol 69: 956–961PubMedGoogle Scholar
  18. 18.
    Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143: 1115–1120PubMedGoogle Scholar
  19. 19.
    Dreyfuss D, Saumon G (1993) The role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am J Respir Crit Care Med 148: 1194–1203Google Scholar
  20. 20.
    Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73: 123–133PubMedGoogle Scholar
  21. 21.
    Wyszogrodski I, Kyei-Aboagye K, Taeusch HW, Avery ME (1975) Surfactant inactivation by hyperventilation: Conservation by end-expiratory pressure. J Appl Physiol 38: 461–466PubMedGoogle Scholar
  22. 22.
    Gattiononi L, Pesenti A, Avalli L, Ross F, Bomino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure: Computed tomographic scan study. Am Rev Respir Dis 136: 730–736CrossRefGoogle Scholar
  23. 23.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807–1814PubMedGoogle Scholar
  24. 24.
    Sandhar BK, Niblett DJ, Argiras EP, Dunmill MS, Sykes MK (1988) Effect of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14: 538–546PubMedCrossRefGoogle Scholar
  25. 25.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressure can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334PubMedGoogle Scholar
  26. 26.
    Ranieri VM, Eissa NT, Corbeil C, et al (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144: 544–551PubMedCrossRefGoogle Scholar
  27. 27.
    Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Crit Care Med 22: 1568–1578PubMedCrossRefGoogle Scholar
  28. 28.
    Amato MBP, Barbas CSV, Medeiros DM, et al (1993) Beneficial effects of the “open lung approach” with low distending pressures in ARDS. Am J Respir Crit Care Med 147: (Abst)Google Scholar
  29. 29.
    Bond DM, McAloon J, Froese AB (1994) Substantial inflations improve respiratory compliance during high frequency oscillatory ventilation but not during large tidal volume positive pressure ventilation in rabbits. Crit Care Med 22: 1269–1277PubMedCrossRefGoogle Scholar
  30. 30.
    Kezzler M, Ryckman FC, McDonald JV, et al (1992) A prospective randomized study of high vs low PEEP during ECMO. J Pediatr 120: 107–113CrossRefGoogle Scholar
  31. 31.
    Rouple E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–128Google Scholar
  32. 32.
    Ranieri VM, Giuliani R, Fiore T, Danbrosio M, Milic-Emili J (1994) Volume pressure curve of the respiratory system predicts effects of PEEP in ARDS: Occlusion vs constant flow technique. Am J Respir Crit Care Med 149: 19–27PubMedGoogle Scholar
  33. 33.
    Putensen C, Bain M, Hormann C (1993) Selecting ventilator settings according to the variables derived from the quasi static pressure/volume relationship in patients with acute lung injury. Anesth Analg 77: 436–447PubMedCrossRefGoogle Scholar
  34. 34.
    Suter PM, Fairley HB, Isenberg MD (1975) Optimic end-expiratory pressure in patients with acute pulmonary failure. N Engl J Med 292: 284–289PubMedCrossRefGoogle Scholar
  35. 35.
    Miller RS, Nelson RD, Di Russo SM, Rutherford EJ, Safesak K, Morris JA (1992) High level PEEP management in trauma associated adult respiratory distress syndrome. J Trauma 33: 284–290PubMedCrossRefGoogle Scholar
  36. 36.
    Armstrong BW, MacIntyre NR (1995) Pressure-controlled, inverse ratio ventilation that avoid air trapping in the adult respiratory syndrome. Crit Care Med 23: 279–285PubMedCrossRefGoogle Scholar
  37. 37.
    MacIntyre NR (1991) Intrinsic positive end-expiratory pressure. Prob Respir Care 4: 44–51Google Scholar
  38. 38.
    Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129: 385–387PubMedGoogle Scholar
  39. 39.
    Fiehl F, Perret C (1994) Permissive hypercapnia — how permissive should we be? Am J Respir Crit Care Med 150: 1722–1737Google Scholar
  40. 40.
    Tuxen DV (1994) Permissive hypercapnic ventilation. Am J Respir Crit Care Med 150: 870–874PubMedGoogle Scholar
  41. 41.
    Simon RJ, Mawilmada S, Ivatury RR (1884) Hypercapnia: Is there a cause for concern? J Trauma 37: 74–81CrossRefGoogle Scholar
  42. 42.
    Hedley-Whyte J, Laver MB, Bendixen HH (1964) Effect of changes in tidal ventilation on physiologic shunting. Am J Physiol 206: 891–897PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • N. R. MacIntyre

There are no affiliations available

Personalised recommendations