Skip to main content

Critical Analysis of Venoarterial CO2 Gradient as a Marker of Tissue Hypoxia

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1996))

Abstract

The venoarterial carbon dioxide (CO2) tension (PCO2) gradient (ΔPCO2 ) is the difference between PCO2 in mixed venous blood (PvCO2) and PCO2 in arterial blood (PaCO2):

$$ \Delta {\text{PC}}{{\text{O}}_{{\text{2}}}}{\mkern 1mu} = {\mkern 1mu} {\text{PvC}}{{\text{O}}_{{\text{2}}}}{\mkern 1mu} - {\mkern 1mu} {\text{PaC}}{{\text{O}}_{{\text{2}}}} $$

PaCO2 and PvCO2 are partial pressures of the dissolved CO2 in arterial and mixed venous blood, respectively, which represent only a fraction of arterial CO2 content (CaCO2) and mixed venous CO2 content (CvCO2), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McHardy GJR (1967) The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci 32: 299–309

    PubMed  CAS  Google Scholar 

  2. Douglas AR, Jones NL, Reed JW (1988) Calculation of whole blood CO2 content. J Appl Physiol 65: 473–477

    PubMed  CAS  Google Scholar 

  3. Hachamovitch R, Brown HV, Rubin SA (1991) Respiratory and circulatory analysis of CO2 output during exercise in chronic heart failure. Circulation 84: 605–612

    PubMed  CAS  Google Scholar 

  4. Randal H, Cohen J (1966) Anaerobic CO2 production by dog kidney in vitro. Am J Physiol 211: 493–505

    Google Scholar 

  5. Von Planta M, Weil MH, Gazmuri RJ, Bisera J, Rackow EC (1989) Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation 80: 684–692

    Article  Google Scholar 

  6. Kette F, Weil MH, Gazmuri RJ, Bisera J, Rackow EC (1993) Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 21: 901–906

    Article  PubMed  CAS  Google Scholar 

  7. Macgovern GJ, Flaherty JT, Kanter KR, et al (1982) Assessment of myocardial protection during global ischemia with myocardial gas tension monitoring. Surgery 92: 373–380

    Google Scholar 

  8. Bowles SA, Schlichtig R, Kramer DJ, Klions HA (1992) Arteriovenous pH and partial pressure of carbon dioxide detect critical oxygen delivery during progressive hemorrhage in dogs. J Crit Care 7: 95–105

    Article  Google Scholar 

  9. Van der Linden P, Rausin I, Deltell, et al (1995) Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 80: 269–275

    PubMed  Google Scholar 

  10. Zhang H, Vincent JL (1993) Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148: 867–871

    Article  PubMed  CAS  Google Scholar 

  11. Groeneveld ABJ, Vermeij CG, Thijs LG (1991) Arterial and mixed venous blood acidbase balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg 73: 576–582

    PubMed  CAS  Google Scholar 

  12. Mathias DW, Clifford PS, Klopfenstein S (1988) Mixed venous blood gases are superior to arterial blood gases in assessing acid-base status and oxygenation during acute cardiac tamponade in dogs. Clin Invest 82: 833–838

    Article  CAS  Google Scholar 

  13. Rackow EC, Astiz ME, Mecher CE, Weil MH (1994) Increased venous-arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med 22: 121–125

    PubMed  CAS  Google Scholar 

  14. Durkin R, Gergits MA, Reed III JF, Fitzgibbons J (1993) The relationship between the arteriovenous carbon dioxide gradient and cardiac index. J Crit Care 8: 217–221

    Article  PubMed  CAS  Google Scholar 

  15. Lenique F, Teboul JL, Boujdaria R, et al (1993) Usefulness of venoarterial CO2 tension gradient to adjust dobutamine dose in CHF patients. Am Rev Respir Dis 147:A621 (Abst)

    Google Scholar 

  16. Teboul JL, Graini L, Boujdaria R, Berton C, Richard C (1993) Cardiac index vs oxygenderived parameters for rational use of dobutamine in patients with congestive heart failure. Chest 103: 81–85

    Article  PubMed  CAS  Google Scholar 

  17. Hamalgyi DFJ, Kennedy M, Varga D (1970) Hidden hypercapnia in hemorrhagic hypotension. Anesthesiology 33: 594–601

    Article  Google Scholar 

  18. Ducey JP, Lamielle JM, Gueller GE (1992) Arterial-venous carbon dioxide tension difference during severe hemorrhage and resuscitation. Crit Care Med 20: 518–522

    Article  PubMed  CAS  Google Scholar 

  19. Mecher CE, Rackow EC, Astiz ME, Weil MH (1990) Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 18: 585–589

    Article  PubMed  CAS  Google Scholar 

  20. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ (1992) Veno-arterial carbon dioxide gradient in human septic shock. Chest 201: 509–515

    Article  Google Scholar 

  21. Lind L (1995) Veno-arterial carbon dioxide and pH gradients and survival in critical illness. Eur J Clin Invest 25: 201–205

    Article  PubMed  CAS  Google Scholar 

  22. Grundler W, Weil MH, Rackow EC (1986) Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation 74: 1071–1074

    Article  PubMed  CAS  Google Scholar 

  23. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI (1986) Difference in acid-base status between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 315: 153–156

    Article  PubMed  CAS  Google Scholar 

  24. Adrogue HJ, Rashad N, Gorin AB, Yacoub J, Madias NE (1989) Assessing acid-base status in circulatory failure. N Engl J Med 320: 1312–1316

    Article  PubMed  CAS  Google Scholar 

  25. Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R (1991) Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med 19: 1362–1364

    Article  PubMed  CAS  Google Scholar 

  26. Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED (1995) Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med 23: 545–552

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teboul, J.L., Michard, F., Richard, C. (1996). Critical Analysis of Venoarterial CO2 Gradient as a Marker of Tissue Hypoxia. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80053-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80053-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60552-2

  • Online ISBN: 978-3-642-80053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics