The Role of Microcirculation in Sepsis

  • M. Sair
  • T. W. Evans
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1996)


Sepsis and the systemic inflammatory response syndrome (SIRS) are associated with substantial morbidity and mortality [1]. The incidence may be increasing as a result of ageing patient populations and increasing prevalence of immune-modulating disease and drug therapies. The effects of sepsis on the microcirculation and cellular function are poorly understood. Clinical research has been hampered by the heterogeneity of patient groups and the lack of uniformly accepted definitions [2]. Laboratory observations are frequently difficult to interpret because of the variety and limitations of models employed [3].


Septic Shock Systemic Inflammatory Response Syndrome Multiple Organ Dysfunction Syndrome Gastric Tonometry Hyperdynamic Sepsis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bone RC (1991) The pathogenesis of sepsis. Ann Int Med 115: 457–469PubMedGoogle Scholar
  2. 2.
    Vincent JL, Bihari D (1992) Sepsis, severe sepsis or sepsis syndrome: Need for clarification. Intensive Care Med 18: 255–257PubMedCrossRefGoogle Scholar
  3. 3.
    Fink MP, O’Heard S (1990) Laboratory models of sepsis and septic shock. J Surg Res 49: 186–196PubMedCrossRefGoogle Scholar
  4. 4.
    Puranapanda V, Hinshaw LB, O’Rear EA, Chang AC, Whitsett TL (1987) Erythrocyte deformability in canine septic shock and the efficacy of pentoxifylline and a leukotriene antagonist. Proc Soc Exp BioI Med 185: 206–210Google Scholar
  5. 5.
    Langenfeld JE, Machiedo GW, Lyons M, Rush BF, Dikdan G, Lsyz TW (1994) Correlation between red blood cell deformability and changes in haemodynamic function. Surgery 116: 859–867PubMedGoogle Scholar
  6. 6.
    Powell RJ, Machiedo GW, Rush BF Jr (1993) Decreased red blood cell deformability and impaired oxygen utilization during human sepsis. Am Surg 59: 65–68PubMedGoogle Scholar
  7. 7.
    Dormehl IC, Hugo N, Knoessen O (1991) In vivo assessment of regional microvascular albumin leakage during E. coli septic shock in the baboon model. Am J Physiol Imaging 6: 81–84PubMedGoogle Scholar
  8. 8.
    St. John RC, Dorinsky PM (1994) Multiple organ dysfunction syndrome: Pathogenesis and approach to therapy. Sem Respir Crit Care Med 15: 325–333CrossRefGoogle Scholar
  9. 9.
    Pallares LCM, Evans TW (1992) Oxygen transport in the critically ill. Respir Med 86: 289–295PubMedCrossRefGoogle Scholar
  10. 10.
    Fiddian-Green RG, Haglund U, Gutierrez G, Shoemaker WC (1993) Goals for the resuscitation of shock. Crit Care Med 21: S25–S31PubMedCrossRefGoogle Scholar
  11. 11.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 1717–1722PubMedCrossRefGoogle Scholar
  12. 12.
    Phang PT, Cunningham KF, Ronco JJ, Wiggs BR, Russell JA (1994) Mathematical coupling explains dependence of oxygen consumption on oxygen delivery in ARDS. Am J Respir Crit Care Med 150: 318–323PubMedGoogle Scholar
  13. 13.
    Mizock BA, Falk JL (1992) Lactic acidosis in critical illness. Crit Care Med 20: 80–93PubMedCrossRefGoogle Scholar
  14. 14.
    Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetics failure in sepsis. JAMA 267: 1503–1510PubMedCrossRefGoogle Scholar
  15. 15.
    Ruokonen E, Takala J, Uusaro A (1991) Effect of vasoactive treatment on the relationship between mixed venous and regional saturation. Crit Care Med 19: 1365–1369PubMedCrossRefGoogle Scholar
  16. 16.
    Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ (1992) Veno-arterial carbon dioxide gradient in human septic shock. Chest 101: 509–515PubMedCrossRefGoogle Scholar
  17. 17.
    Rackow EC, Astiz ME, Mecher CE, Weil MH (1994) Increased venous-arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med 22: 121–125PubMedGoogle Scholar
  18. 18.
    Ruokonen E, Takala J, Kari A, Saxen H, Mertsola J, Hansen EJ (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21: 1296–1303PubMedCrossRefGoogle Scholar
  19. 19.
    Fiddian-Green RG (1995) Gastric intramucosal pH, tissue oxygenation and acid base balance. Br J Anaesth 74: 591–606PubMedCrossRefGoogle Scholar
  20. 20.
    Boyd O, Mackay CJ, Lamb G, Bland JM, Grounds RM, Bennett ED (1993) Comparison of clinical information gained from routine blood-gas analysis and from gastric tonometry for intramural pH. Lancet 341: 142–146PubMedCrossRefGoogle Scholar
  21. 21.
    Lavery GG, Trinder TJ (1995) Tonometry in critical illness. Care Crit Ill 11: 23–27Google Scholar
  22. 22.
    Doglio GR, Pusajo JF, Egurrola MA (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19: 1037–1040PubMedCrossRefGoogle Scholar
  23. 23.
    Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339: 195–199PubMedCrossRefGoogle Scholar
  24. 24.
    Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272: 1354–1357PubMedCrossRefGoogle Scholar
  25. 25.
    Smithies M, Yee TH, Jackson L, Beale R, Bihari D (1994) Protecting the gut and the liver in the critically ill: Effects of dopexamine. Crit Care Med 22: 789–795PubMedCrossRefGoogle Scholar
  26. 26.
    Kanai AJ, Strauss HC, Truskey GA, Crews AL, Grunfeld S, Malinski T (1995) Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells measured directly with a porphyrinic micros ens or. Circ Res 77: 284–293PubMedGoogle Scholar
  27. 27.
    Kopp KH, Sinagowitz E, Muller H (1984) Oxygen supply of skeletal muscle in experimental endotoxic shock. Adv Exp Med Bioi 169: 467–476Google Scholar
  28. 28.
    Gutierrez G, Lund N, Palizas F (1991) Rabbit skeletal muscle PO2 during hypodynamic sepsis. Chest 99: 224–229PubMedCrossRefGoogle Scholar
  29. 29.
    Astiz M, Rackow EC, Weil MH, Schumer W (1988) Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock 26: 311–320PubMedGoogle Scholar
  30. 30.
    Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800PubMedGoogle Scholar
  31. 31.
    Naumann CP, Ruetsch YA, Fleckenstein W, et al (1992) pO2-profiles in human muscle tissue as indicator of therapeutical effect in septic shock patients. Adv Exp Med Biol 317: 869–877PubMedGoogle Scholar
  32. 32.
    Boekstegers P, Weidenhofer S, Kapsner T, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22: 640–650PubMedCrossRefGoogle Scholar
  33. 33.
    Boekstegers P, Weidenhofer S, Pilz G, Werdan K (1991) Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: Comparison to limited infection and cardiogenic shock. Infection 19: 317–323PubMedCrossRefGoogle Scholar
  34. 34.
    Reinhart K, Bloos F, Konig F, Hannemann L, Kuss B (1990) Oxygen transport-related variables and muscle tissue oxygenation in critically ill patients with and without sepsis. Adv Exp Med BioI 277: 861–864Google Scholar
  35. 35.
    Maisey M, Jeffery P (1991) Clinical applications of positron emission tomography. Br J Clin Pract 45: 265–272PubMedGoogle Scholar
  36. 36.
    Hotchkiss RS, Rust RS, Dence CS, et al (1991) Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18Flfluoromisonidazole. Am J Physiol 261: R965–R972PubMedGoogle Scholar
  37. 37.
    Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94: 2077–2083PubMedCrossRefGoogle Scholar
  38. 38.
    Young JD, Cameron EM (1995) Dynamics of skin blood flow in human sepsis. Intensive Care Med 21: 669–674PubMedCrossRefGoogle Scholar
  39. 39.
    Spain DA, Wilson MA, Bar-Natan MF, Garrison RN (1994) Nitric oxide synthase inhibition aggravates intestinal microvascular vasoconstriction and hypoperfusion of bacteremia. J Trauma 36: 720–725PubMedCrossRefGoogle Scholar
  40. 40.
    Lang CH, Bagby GJ, Ferguson JL, Spitzer JJ (1984) Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am J Physiol 246: R331–R337PubMedGoogle Scholar
  41. 41.
    Meyer J, Hinder F, Stothert J, et al (1994) Increased organ blood flow in chronic endotoxemia is reversed by nitric oxide synthase inhibition. J Appl Physiol 76: 2785–2793PubMedGoogle Scholar
  42. 42.
    Mulder MF, van Lambalgen AA, Huisman E, Viser JJ, van den Bos GC, Thijs LG (1994) Protective role of NO in the regional hemodynamic changes during acute endotoxemia in rats. Am J Physiol 266: H1558–H1564PubMedGoogle Scholar
  43. 43.
    Martin CM, Sibbald W J (1994) Modulation of hemodynamics and organ blood flow by nitric oxide synthase inhibition is not altered in normotensive, septic rats. Am J Respir Crit Care Med 150: 1539–1544PubMedGoogle Scholar
  44. 44.
    Cryer HM, Garrison RN, Kaebnick HW, Harris PD, Flint LM (1987) Skeletal microcirculatory responses to hyperdynamic Escherichia coli sepsis in unanesthetized rats. Arch Surg 122: 86–92PubMedGoogle Scholar
  45. 45.
    Garrison RN, Cryer HM (1989) Role of the microcirculation to skeletal muscle during shock. Prog Clin BioI Res 299: 43–52Google Scholar
  46. 46.
    Boczkowski J, Vicaut E, Aubier M (1992) In vivo effects of Escherichia coli endotoxemia on diaphragmatic microcirculation in rats. J Appl Physiol 72: 2219–2224PubMedGoogle Scholar
  47. 47.
    Steeb GD, Wilson MA, Garrison RN (1992) Pentoxifylline preserves small-intestine microvascular blood flow during bacteremia. Surgery 112: 756–764PubMedGoogle Scholar
  48. 48.
    Theuer CJ, Wilson MA, Steeb GD, Garrison RN (1993) Microvascular vasoconstriction and mucosal hypoperfusion of the rat small intestine during bacteremia. Circulatory Shock 40: 61–68PubMedGoogle Scholar
  49. 49.
    Spain DA, Wilson MA, Garrison RN (1994) Nitric oxide synthase inhibition exacerbates sepsis-induced renal hypoperfusion. Surgery 116: 322–331PubMedGoogle Scholar
  50. 50.
    Whitney RJ (1953) The measurement of volume changes in human limbs. J Physiol 121: 1–27PubMedGoogle Scholar
  51. 51.
    Gamble J, Gartside IB, Christ F (1994) Non-invasive assessment of the microcirculation in disease. Br J Intensive Care 18: 21–31Google Scholar
  52. 52.
    Astiz ME, Rackow EC, Haydon P, Karras G, Weil MH (1989) Skeletal muscle blood flow and venous capacitance in patients with severe sepsis and systemic hypoperfusion. Chest 96: 363–366PubMedCrossRefGoogle Scholar
  53. 53.
    Astiz ME, Tilly E, Rackow ED, Weil MH (1991) Peripheral vascular tone in sepsis. Chest 99: 1072–1075PubMedCrossRefGoogle Scholar
  54. 54.
    Astiz ME, DeGent GE, Lin RY, Rackow EC (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23: 265–271PubMedCrossRefGoogle Scholar
  55. 55.
    Simonson SG, Piantadosi CA (1995) Near-infrared spectroscopy for monitoring tissue oxygenation in the critical care setting. Cur Opin Crit Care 1: 197–203CrossRefGoogle Scholar
  56. 56.
    Griebel JA, Fracica PJ, Piantadosi CA (1990) In vivo responses of mitochondrial redox levels to Eschericia coli bacteremia in primates. J Crit Care 5: 1–9CrossRefGoogle Scholar
  57. 57.
    Simonson SG, Welty-Wolf K, Huang YT, et al (1994) Altered mitochondrial redox responses in gram-negative septic shock in primates. Circ Shock 43: 34–43PubMedGoogle Scholar
  58. 58.
    Schaefer CF, Biber B, Lerner MR, Jobsis-VanderVliet FF, Fagraeus L (1991) Rapid reduction of intestinal cytochrome a,a3 during lethal endotoxemia. J Surg Res 51: 382–391PubMedCrossRefGoogle Scholar
  59. 59.
    Corbally MT, Brennan MF (1990) Non-invasive measurement of regional blood flow in man. Am J Surg 160: 313–321PubMedCrossRefGoogle Scholar
  60. 60.
    Radda GK (1986) The use of NMR spectroscopy for the understanding of disease. Science 233: 640–645PubMedCrossRefGoogle Scholar
  61. 61.
    Hotchkiss RS, Song SK, Neil JJ, et al (1991) Sepsis does not impair tricarboxylic acid cycle in the heart. Am Physiol 260: C50–C57Google Scholar
  62. 62.
    Hotchkiss RS, Rust RS, Song SK, Ackerman JJ (1993) Effect of sepsis on brain energy metabolism in normoxic and hypoxic rats. Circ Shock 40: 303–310PubMedGoogle Scholar
  63. 63.
    Solomon MA, Correa R, Alexander HR, et al (1994) Myocardial energy metabolism and morphology in a canine model of sepsis. Am J Physiol 266:H757–H768PubMedGoogle Scholar
  64. 64.
    Jepson MM, Cox M, Bates PC, et al (1987) Regional blood flow and skeletal muscle energy status in endotoxemic rats. Am J Physiol 252:E581–E587PubMedGoogle Scholar
  65. 65.
    Jacobs DO, Kobayashi T, Imagire J, Grant C, Kesselly B, Wilmore DW (1991) Sepsis alters skeletal muscle energetics and membrane function. Surgery 110: 318–326PubMedGoogle Scholar
  66. 66.
    Song SK, Hotchkiss RS, Karl IE, Ackerman JJH (1992) Concurrent quantification of tissue metabolism and blood flow via 2H/31P NMR in vivo. III. Alterations of muscle blood flow and metabolism during sepsis. Magn Reson Med 25: 67–77PubMedCrossRefGoogle Scholar
  67. 67.
    Gilles RJ, D’Orio V, Ciancabilla F, Carlier PG (1994) In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: A prospective, randomized study. Crit Care Med 22: 499–505PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. Sair
  • T. W. Evans

There are no affiliations available

Personalised recommendations