Skip to main content

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 142))

Abstract

Monoclonal antibodies may well be on their way to becoming an integral part of therapy after the most recent success in prolonging overall and recurrence-free survival in patients with stage III colorectal cancer after potentially curative surgery. After a median follow-up of 5 years, antibody treatment reduced the overall death rate by 30% and decreased the recurrence rate by 27%. These results are similar with regard to efficacy but there is less toxicity with those obtained in contemporary and more recent chemotherapy trials. The key to success with high-molecular-weight substances such as immunoglobulines lies in the careful selection of the appropriate target population, i.e., patients with minimal residual disease, where only isolated tumorcells which are readily accessible to therapy are present. An argument for combining immunotherapy with chemotherapy can be made on the basis of the phenotype of individual disseminated tumor cells, which by immunocy-tochemistry were found to only rarely express proliferation-associated antigens and therefore are independent of the cell cycle. Further efforts to improve immunotherapy have also led to the combined clinical use of antibodies with biologic response modifiers which are known to enhance effector cellmediated antibody-dependent cytotoxicity. Additional rationally designed clinical trials are ongoing in which specific immunotherapy is directed towards known, readily accessible, and abundant cell target structures, either alone or combined with treatment modalities which employ different action mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajorin DF, Chapman PB, Wong G et al (1990) Phase-I evaluation of a combination of monoclonal antibody R24 and interleukin 2 in patients with metastatic melanoma. Cancer Res 50:7490–7495

    PubMed  CAS  Google Scholar 

  • Beatty JD, Duda RB, Williams L et al (1986) Preoperative imaging of colorectal carcinoma with 111-In-labelled anticarcinoembryonic antigen monoclonal antibody. Cancer Res 46:6494–6502

    PubMed  CAS  Google Scholar 

  • Bentley GA, Boulot G, Riottot MM et al (1990) Three-dimensional structure of an idiotope-anti-idiotope complex. Nature 348:254

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya-Chatterjee M, Mukerjee S, Biddle W et al (1990) Murine monoclonal anti-idiotype antibody as a potential network antigen for human carcino-embryonic antigen. J Immunol 145:2758

    PubMed  CAS  Google Scholar 

  • Bhattacharya-Chatterjee M, Foon KA, Köhler H (1994) Review. Idiotypic antibody immunotherapy of cancer. Cancer Immunol Immunother 38:75–82

    Article  Google Scholar 

  • Blottière HM, Steplewski Z, Herlyn D et al (1991) Human anti-murine immunoglobulin responses and immune functions in cancer patients receiving murine monoclonal antibody therapy. Hum Antibod Hybridomas 2:16–25

    Google Scholar 

  • Büchler M, Friess H, Schultheiss K-H et al (1991) A randomized controlled trial of adjuvant immunotherapy (murine monoclonal antibody 494/32) in resectable pancreatic cancer. Cancer 68:1507–1512

    Article  PubMed  Google Scholar 

  • Carrasquillo JA, Sugarbaker P, Colcher D et al (1988) Radioimmunoscintigraphy of colon cancer with iodine-131-labeled B72.3 monoclonal antibody. J Nucl Med 29:1022–1030

    PubMed  CAS  Google Scholar 

  • Casalini P, Mezzanzanica D, Canevari S et al (1991) Use of combination of monclonal antibodies directed against three distinct epitopes of a tumor-associated antigen — analysis of cell binding and internalization. Int J Cancer 48:284–290

    Article  PubMed  CAS  Google Scholar 

  • Chachoua A, Oratz R, Liebes L et al (1994) Phase-Ib trial of granulocyte-macrophage colony-stimulating factor combined with murine monoclonal antibody R24 in patients with metastatic melanoma. J Immunother 16:132–141

    Article  CAS  Google Scholar 

  • Chatal JF, Saccavini J-C, Gestin J-F et al (1989) Biodistribution of indium-111-labeled OC 125 monoclonal antibody intraperitoneally injected into patients operated on for ovarian carcinomas. Cancer Res 49:3087–3094

    PubMed  CAS  Google Scholar 

  • Chen Y-H (1992) Herstellung and Charakterisierung anti-idiotypischer Antikörper gegen monoklonale CD4-Antikörper als Grundlage einer HIVVakzineentwicklung. Doctoral thesis University of Munich

    Google Scholar 

  • Colnaghi MI, Ménard S, Canevari S (1993) Evoluation of the therapeutic use of new monoclonal antibodies. Curr Op Oncol 5:1035–1042

    Article  CAS  Google Scholar 

  • Creekmore S, Urba W, Kopp W et al (1992) Phase-Ib/II trial of R24 antibody and interleukin-2 in melanoma. Proc Am Soc Clin Oncol 11:1186

    Google Scholar 

  • Davis SJ, Schockmel GA, Somoza C et al (1992) Antibody and HIV-1 gp 120 recognition of CD4 undermines the concept of mimicry between antibodies and receptors. Nature 358

    Google Scholar 

  • Eisenthal A, Cameron RB, Rosenberg SA (1990) Induction of antibody-dependent cellular cytotoxicity in vivo by IFN-a and its antitumor efficacy against established B16 melanoma liver metastases when combined with specific anti-B16 monoclonal antibody. J Immunol 144(11):4463–4471

    PubMed  CAS  Google Scholar 

  • Erlichmann C, Marsoni S, Seitz JF et al (1994) Event-free and overall survival is increased by FUFA in resected B and C colon cancer: a prospective pooled analysis of 3 randomized trials. Proc Am Soc Clin Oncol 13:194

    Google Scholar 

  • Fogler WE, Klinger MR, Abraham KG et al (1988) Enhanced cytotoxicity against colon carcinoma by combinations of noncompeting monoclonal antibodies to the 17–1A antigen. Cancer Res 48:6303–6308

    PubMed  CAS  Google Scholar 

  • Frödin JE, Lefvert AK, Mellstedt H (1990) Pharmacokinetics of the mouse monoclonal antibody 17–1A in cancer patients receiving various treatment schedules. Cancer Res 50:4866–4871

    PubMed  Google Scholar 

  • Frödin JE, Faxas ME, Hagström B et al (1991) Induction of anti-idiotypic (ab2) and anti-anti-idiotypic (ab3) antibodies in patients treated with the mouse monoclonal antibody 17–1A (ab1). Relation to the clinical outcome — an important antitumoral effector function? Hybridoma 10:421–431

    Article  PubMed  Google Scholar 

  • Gerhard M, Juhl H, Kalthoff H et al (1994) Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aspirates by polymerase chain reaction. J Clin Oncol 12(4):725–729

    PubMed  CAS  Google Scholar 

  • GITSG (1985) Prolongation of the disease-free interval in surgically treated rectal carcinoma. N Engl J Med 312(23):1465–1472

    Article  Google Scholar 

  • Göttlinger HG, Funke I, Johnson JP et al (1986) The epithelial cell surface antigen 17íA, a target for antibody-mediated tumor therapy: its biochemical nature, tissue distribution and recognition by different monoclonal antibodies. Int J Cancer 38:4753

    Google Scholar 

  • Goodwin RA, Tuttle SE, Bucci DM et al (1987) Tumor-associated antigen expression of primary and metastatic colon carcinomas detected by monoclonal antibody 17íA. Am J Clin Pathol 88:462–467

    PubMed  CAS  Google Scholar 

  • Granowska M, Jass JR, Britton KE et al (1989) A prospective study of the use of 111Inlabeled monoclonal antibody against carcino-embryonic antigen in colorectal cancer and of some biological factors affecting its uptake. Int J Colorectal Dis 4:97–108

    Article  PubMed  CAS  Google Scholar 

  • Granowska M, Britton KE, Mather SJ et al (1993) Radioimmunoscintigraphy with technetium-99m-labelled monoclonal antibody, 1A3, in colorectal cancer. Eur J Nuc Med 20(8):690–698

    CAS  Google Scholar 

  • Grossbard ML, Press OW, Appelbaum FR et al (1992) Monoclonal antibody-based therapies of leukemia and lymphoma. Blood 80(4):863–878

    PubMed  CAS  Google Scholar 

  • Hall WC (1993) Cross-reactivity of mouse monoclonal antibody 17–1A with human tissues. Immunopathology report to Centocor (No. IMo83)

    Google Scholar 

  • Herlyn M, Steplewski Z, Herlyn D et al (1976) Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proc Natl Acad Sci USA 76(3): 1438–1442

    Article  Google Scholar 

  • Herlyn D, Lubeck M, Sears H et al (1985) Specific detection of anti-idiotypic immune responses in cancer patients treated with murine monoclonal antibody. J Immunol Methods 85:27–38

    Article  PubMed  CAS  Google Scholar 

  • Herlyn D, Ross AH, Koprowski H (1986a) Anti-idiotypic antibodies bear the internal image of a human tumor antigen. Science 232:100–102

    Article  CAS  Google Scholar 

  • Herlyn D, Sears H, Iliopoulous D et al (1986b) Anti-idiotypic antibodies to monoclonal antibody CO17–1A. Hybridoma 5[Suppl 1]:S51—S58

    Google Scholar 

  • Herlyn D, Ross AH, Iliopoulos D et al (1987) Induction of specific immunity to human colon carcinoma by anti-idiotypic antibodies to monoclonal antibody C017–1A. Eur J Immunol 17:1649–1652

    Article  PubMed  CAS  Google Scholar 

  • Herlyn D, Benden A, Kane M et al (1991) Anti-idiotype cancer vaccines: pre-clinical and clinical studies. In Vivo 5:615–624

    PubMed  CAS  Google Scholar 

  • Hugh TE (1982) Complement. In: Baron S (ed) Medical microbiology. Addison-Wesley, Menlo Park, pp 31–44

    Google Scholar 

  • Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50:814s-819s

    PubMed  CAS  Google Scholar 

  • Jerne NK (1974) Towards a network theory of the immune system. Ann Inst Pasteur Immunol 125C:373–389

    CAS  Google Scholar 

  • Khazaeli MB, Saleh MN, Wheeler RH et al (1988) Phase-I trial of multiple large doses of murine monoclonal antibody CO17–1A. II. Pharmacokinetics and immune response. J Natl Cancer Inst 80(12):937–942

    Article  PubMed  CAS  Google Scholar 

  • Khazaeli MB, Conry RM, LoBuglio AF (1994) Human immune response to monoclonal antibodies. J Immunother 15:42–52

    Article  CAS  Google Scholar 

  • Koprowski H, Steplewski Z, Mitchell K et al (1979) Colorectal carcinoma antigens detected by hybridoma antibodies. Somat Cell Genet 5(6):957–972

    Article  PubMed  CAS  Google Scholar 

  • Kosmas C, Epenetos AA, Courtenay-Luck NS (1991) T-cell proliferation following monoclonal antibody treatment. In: Epenetos A (ed) Monoclonal antibodies, applications in clinical oncology. Chapman and Hall Medical, London, pp 273–281

    Google Scholar 

  • Krook JE, Moertel CG, Gunderson LL et al (1991) Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med 324(11):709–715

    Article  PubMed  CAS  Google Scholar 

  • Kwak LW, Campbell MJ, Czerwinski DK et al (1992) Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med 327(17):1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Lachman RI (1991) The control of homologous lysis. Immunol Today 12:312–315

    Article  Google Scholar 

  • Lanzavecchia A, Abrignani S, Scheidegger D et al (1988) Antibodies as antigens. The use of mouse monoclonal antibodies of focus human T cells against selected targets J Exp Med 167:345–352

    Article  PubMed  CAS  Google Scholar 

  • Laurie JA, Moertel CG, Fleming TR et al (1987) Surgical adjuvant therapy of large-bowel carcinoma: an evaluation of levamisole and the combination of levamisole and fluorouracil. J Clin Oncol 7:1447–1456

    Google Scholar 

  • Levy PC, Shaw GM, LoBuglio AF (1979) Human monocyte, lymphocyte, and granulocyte antibody-dependent cell-mediated cytotoxicity toward tumor cells. I. General characteristics of cytolysis. J Immunol 123:594–599

    PubMed  CAS  Google Scholar 

  • Liesveld JL, Frediani KE, Winslow JM et al (1991) Cytokine effects and role of adhesive proteins and Fc receptors in human macrophage-mediated antibody-dependent cellular cytotoxicity. J Cell Biochem 45:381–390

    Article  PubMed  CAS  Google Scholar 

  • Lindemann F, Schlimok G, Dirschedl P et al (1992) Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 340:685–689

    Article  PubMed  CAS  Google Scholar 

  • Litvinov SV, Velders MP, Bakker HA (1994) Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 125(2):437–446

    Article  PubMed  CAS  Google Scholar 

  • Mach JP, Chatal JF, Lumbroso JD et al (1983) Tumor localization in patients by radiolabeled monoclonal antibodies against colon carcinoma. Cancer Res 43:55935600

    Google Scholar 

  • Masucci G, Ragnhammar P, Wersäll P et al (1990) Granulocyte-monocyte colony-stimulating factor augments the interleukin-2-induced cytotoxic activity of human lymphocytes in the absence and presence of mouse or chimeric monoclonal antibodies (mAb 17–1A). Cancer Immunol Immunother 31:231–235

    Article  PubMed  CAS  Google Scholar 

  • Masucci G, Mellstedt H (1991) Combinations of IL-2, GM-CSF, IL-4, IFN-a and TFNa increase the antibody-dependent cellular cytotoxicity (ADCC) of blood mononuclear cells in presence of either mouse or chimeric MAb 17–1A — a preclinical evaluation. Cancer J 4(3):168–173

    CAS  Google Scholar 

  • Meredith RF, LoBuglio AF, Plott WE (1991) Pharmacokinetics, immune response, and biodstribution of iodine-131-labeled chimeric mouse/human IgGl,k 17–1A monoclonal antibody. J Nucl Med 32:1162–1168

    PubMed  CAS  Google Scholar 

  • Moertel CG, Fleming TR, MacDonald JS et al (1990) Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 322(6):352–358

    Article  PubMed  CAS  Google Scholar 

  • Moertel CG, Fleming TR, Macdonald JS et al (1995) Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage-III colon carcinoma: a final report. Ann Intern Med 122:321–326

    PubMed  CAS  Google Scholar 

  • Mujoo K, Rosenblum MG, Murray JL et al (1991) Augmented binding of radiolabeled monoclonal antibodies to melanoma cells using specific antibody combinations. Cancer Res 51:2768–2772

    PubMed  CAS  Google Scholar 

  • Muller-Eberhard HJ (1975) Complement. Ann Rev Biochem 44:697–724

    Article  CAS  Google Scholar 

  • O’Connell M, Mailliard J, Macdonald J et al (1993) An intergroup trial of intensive course 5FU and low dose leucovorin as surgical adjuvant therapy for high risk colon cancer. Proc ASCO 12:197

    Google Scholar 

  • O’Connell MJ, Martenson JA, Wieand HS et al (1994) Improving adjuvant therapy for rectal cancer by combining protracted-infusion fluorouracil with radiation therapy after curative surgery. N Engl J Med 331:502–507

    Article  PubMed  Google Scholar 

  • Pantel K, Schlimok G, Kutter D et al (1991) Frequent down-regulation of major histocompatibility class-I antigen expression on individual micrometastatic carcinoma cells. Cancer Res 51:4712–4715

    PubMed  CAS  Google Scholar 

  • Pantel K, Izbicki JR, Angstwurm M et al (1993a) Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res 53:1027–1031

    CAS  Google Scholar 

  • Pantel K, Schlimok G, Braun S et al (1993b) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85(17):1419–1424

    Article  CAS  Google Scholar 

  • Pimm MW, Baldwin RW (1985) Localization of an antitumor monoclonal antibody in human tumor xenographs: kinetic and quantitative studies with the 791T/36 antibody. In: Baldwin RW, Byers VS (eds) Monoclonal antibodies for cancer detection and therapy. Academic Press, New York, pp 97–128

    Google Scholar 

  • Quin S, Cobbald S, Tighe H et al (1987) CD4 Monoclonal antibody pairs for immunosuppression and tolerance induction. Eur J Immunol 17:1159–1165

    Article  Google Scholar 

  • Ragnhammar P, Fagerberg J, Frödin JE et al (1993) Effect of monoclonal antibody 17íA and GM-CSF in patients with advanced colorectal carcinoma — long-lasting, complete remissions can be induced. Int J Cancer 53:751–758

    Article  PubMed  CAS  Google Scholar 

  • Ragnhammar P, Frödin JE, Trotta PP et al (1994) Cytotoxicity of white blood cells activated by granulocyte-colony-stimulating factor, granulocyte/macrophagecolony-stimulating factor and macrophage-colony-stimulating factor against tumor cells in the presence of various monoclonal antibodies. Cancer Immunol Immunother 391:254–262

    Article  Google Scholar 

  • Riethmüller G, Johnson JP (1992) Monoclonal antibodies in the detection and therapy of micrometastatic epithelial cancers. Curr Op Immun 4:647–655

    Article  Google Scholar 

  • Riethmüller G, Schneider-Gädicke E, Johnson JP (1993) Monoclonal antibodies in cancer therapy. Curr Op Immun 5:732–739

    Article  Google Scholar 

  • Riethmüller G, Schneider-Gädicke E, Schlimok G et al (1994) Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. Lancet 343:1177–1183

    Article  PubMed  Google Scholar 

  • Safi F, Roscher R, Beger HG (1988) Prognostic value CA-19–9 determination in resected pancreatic carcinoma. Cancer 3:279–286

    Google Scholar 

  • Saito S, Inque T, Kawase I et al (1991) Two monoclonal antibodies against small-cell lung cancer show existence of synergism in binding. Cancer Immunol Immunother 33:165–170

    Article  PubMed  CAS  Google Scholar 

  • SAKK (1995) Long-term results of single course of adjuvant intraportal chemotherapy for colorectal cancer. Lancet 345:349–353

    Google Scholar 

  • Saleh MN, LoBuglio AF, Wheeler RH et al (1990) A phase-II trial of murine monoclonal antibody 17–1A and y-IFN-clinical and immunological data. Cancer Immunol Immunother 32:185–190

    Article  PubMed  CAS  Google Scholar 

  • Scheinberg DA, Lovett D, Divgi CR et al (1991) A phase-I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 9:478–490

    PubMed  CAS  Google Scholar 

  • Schlimok G, Funke I, Holzmann B et al (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labelling with 17–1A monoclonal antibodies. Proc Natl Acad Sci USA 84:8672–8676

    Article  PubMed  CAS  Google Scholar 

  • Schlimok G, Funke I, Bock B et al (1990) Epithelial tumor cells in bone marrow of patients with colorectal cancer: immunocytochemical detection, phenotypic characterization, and prognostic significance. J Clin Oncol 8:831–837

    PubMed  CAS  Google Scholar 

  • Schlimok G, Pantel K, Loibner H et al (1995) Reduction of metastatic carcinoma cells in bone marrow by intravenously administered monoclonal antibody: towards a novel surrogate test to monitor adjuvant therapies of solid tumors. Eur J Cancer 31A(11):1799–1803

    Article  PubMed  CAS  Google Scholar 

  • Scholz D, Lubeck M, Loibner H et al (1991) Biological activity in the human system of isotype variants of oligosaccharide-Y-specific murine monoclonal antibodies. Cancer Immunol Immunother 33:153–157

    Article  PubMed  CAS  Google Scholar 

  • Shen JW, Atkinson B, Koprowski H et al (1984) Binding of murine immunoglobulin to human tissues after immunotherapy with anticolorectal carcinoma monoclonal antibody. Int J Cancer 33:465–468

    Article  PubMed  CAS  Google Scholar 

  • Shetye J, Frödin JE, Christensson B et al (1988) Immunohistochemical monitoring of metastatic colorectal carcinoma in patients treated with monoclonal antibodies (MAb 17–1A). Cancer Immunol Immunother 27:154–162

    Article  PubMed  CAS  Google Scholar 

  • Steplewski Z, Lubeck MD, Koprowski H (1983) Human macrophages armed with murine immunoglobulin G2a antibodies to tumors destroy human cancer cells. Science 221:865–867

    Article  PubMed  CAS  Google Scholar 

  • Steplewski Z, Herlyn D, Lubeck M et al (1986) Mechanisms of tumor growth inhibition. Hybridoma 5:S59—S64

    PubMed  Google Scholar 

  • Velders MP, Litvinov SV, Warnaar SO et al (1994) New chimeric antipancarcinoma monoclonal antibody with superior cytotoxicity-mediating potency. Cancer Res 54:1753–1759

    PubMed  CAS  Google Scholar 

  • Viale G, Flamini G, Grassi F et al (1989) Idiotypic replica of an anti-human tumor-associated antigen monoclonal antibody. J Immunol 143:4338

    PubMed  CAS  Google Scholar 

  • Wang Z, Dudhane A, Orlikowsky T et al (1994) CD4 engagement induces Fas antigen-dependent apoptosis of T cells in vivo. Eur J Immunol 24:1549–1552

    Article  PubMed  CAS  Google Scholar 

  • Weissenhorn W, Chen YH, Riethmüller G et al (1992) VH-related idiotypes detected by site-directed mutagenesis. A study induced by the failure to find CD4 antiidiotypic antibodies mimicking the cellular receptor of HIV. J Immunol 149(4): 1237–1241

    PubMed  CAS  Google Scholar 

  • Welt S, Divgi C, Kemeny N et al (1994) Phase-I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 12(8): 1561–1571

    PubMed  CAS  Google Scholar 

  • Windle R, Bell PR and Shaw D (1987) Five-year results of a randomized trial of adjuvant 5-fluorouracil and levamisole in colorectal cancer. Br J Surg 74:569–572

    Article  PubMed  CAS  Google Scholar 

  • Wolmark N, Rockette H et al (1993) The benefit of leucovorin-modulated fluurouracil as postoperative adjuvant therapy for primary colon cancer: results from national surgical adjuvant breast and bowel project protocol C-03. J Clin Oncol 11:1879–1887

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holz, E., Raab, R., Riethmüller, G. (1996). Antibody-Based Immunotherapeutic Strategies in Colorectal Cancer. In: Kreuser, ED., Schlag, P.M. (eds) New Perspectives in Molecular and Clinical Management of Gastrointestinal Tumors. Recent Results in Cancer Research, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80035-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80035-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80037-5

  • Online ISBN: 978-3-642-80035-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics