Advertisement

Somatostatin Receptor Scintigraphy in the Diagnosis of Neuroendocrine Gastroenteropancreatic Tumors

  • M. Bäder
  • K. Koppenhagen
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 142)

Abstract

Somatostatin receptor scintigraphy is a new, very sensitive procedure for detecting receptor-positive neuroendocrine tumors. Radiolabeled somatostatin analogues are selectively taken up after intravenous administration by tissue carrying somatostatin receptors and, as with the skeletal scintiscan, permit a whole-body visualization of receptor-positive tumors and metastases. Somatostatin receptor scintigraphy shows an overall sensitivity of about 84% for neuroendocrine gastroenteropancreatic tumors. This kind of scintigraphy should be applied in primary tumor localization, staging, and course control in a confirmed or highly probable neuroendocrine gastroenteropancreatic tumor. Furthermore, the use of a gamma probe for intraoperative tumor localization is demonstrated. Therapy with radioactively marked somatostatin analogues should be possible because of the highly selective tumor uptake. The development of an optimal tracer is the subject of current research.

Keywords

Gamma Probe Midgut Carcinoid Neuroendocrine Gastroenteropancreatic Tumor Anterior Pituitary Lobe Foregut Carcinoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlman H, Wängberg B, Tisell LE, Nilsson O, Fjälling M, Forssell-Aronsson E (1994) Clinical efficacy of octreotide scintigraphy in patients with midgut carcinoid tumors and evaluation of intraoperative scintillation detection. Br J Surg 81: 1144–1149PubMedCrossRefGoogle Scholar
  2. Amherdt M, Patel YC, Orci L (1987) Selective binding of somatostatin-14 and somatostatin-28 to islet cells revealed by quantitative electron microscopic autoradiography. J Clin Invest 80: 1455–1458PubMedCrossRefGoogle Scholar
  3. Arnold R, Neuhaus C, Trautmann ME (1992) Therapie endokriner gastroenteropankreatischer Tumoren mit dem Somatostatin-Analogon Octreotid. Dtsch Med Wochenschr 117: 1067–1071PubMedCrossRefGoogle Scholar
  4. Bakker WH, Albert R, Bruns C, Breeman WAP, Hofland LJ, Marbach P, Pless J, Pralet D, Stolz B, Koper JW, Lamberts SWJ, Visser TJ, Krenning EP (1991a) [In-111-DTPA-D-Phe1]-Octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci 49:1583–1591CrossRefGoogle Scholar
  5. Bakker WH, Krenning EP, Breeman WAP, Kooij PPM, Reubi JC, Koper JW, de Jong M, Lameris JS, Visser TJ, Lamberts SWJ (1991b) In vivo use of a radioiodinated somatostatin analogue: dynamics, metabolism and binding to somatostatin receptor-positive tumors in man. J Nucl Med 32: 1184–1189Google Scholar
  6. Bakker WH, Krenning EP, Breeman WAP, Koper JW, Kooij PPM, Reubi JC, Klijn JGM, Visser TJ, Docter R, Lamberts SWJ (1990) Receptor scintigraphy with a radioiodinated somatostatin analogue: radiolabeling, purification, biological activity and in vivo applications in animals. J Nucl Med 31: 1501–1509PubMedGoogle Scholar
  7. Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Peteher TJ, Pless J (1982) SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31: 1133–1140PubMedCrossRefGoogle Scholar
  8. Colton CL, Hardy JG (1983) Evaluation of a sterilizable radiation probe as an aid to the surgical treatment of osteoid-osteoma. J Bone Joint Surg (BR) 65: 1019–1022Google Scholar
  9. Dop F-J (1994) The European multicentre clinical trial group on GEP neuroendocrine tumors. J Nucl Med 35: 96 PGoogle Scholar
  10. Dörr U, Räth U, Schürmann G, Höring E, Bach D, Wurm K, Scholz M, Adrian HJ, Bihl H (1993) Somatostatin-Rezeptor-Szintigraphie. Ein neues bildgebendes Verfahren zum spezifischen Nachweis von Dünndarmkarzinoiden. Fortschr Röntgenstr 158: 67–73Google Scholar
  11. Draznih B, Sherman N, Sussman KE, Dahl R, Vatter R (1985) Internalization and cellular processing of somatostatin in primary culture of rat anterior pituitary cells. Endocrinology 117: 960CrossRefGoogle Scholar
  12. Enjalbert A, Tapia-Arancibia L, Rieutort M et al (1982) Somatostatin receptors on rat anterior pituitary membranes. Endocrinology 110: 1634–1640PubMedCrossRefGoogle Scholar
  13. Faiss S, Scherübl H, Bäder M, Fett U, Koppenhagen K, Wiedenmann B, Riecken EO (1994) Bedeutung falsch-positiver Befunde in der Diagnostik neuroendokriner Tumoren des gastroenteropankreatischen Systems. Z Gastroenterol 32: 243–246PubMedGoogle Scholar
  14. Fischmann AJ, Babick JW, Strauss HW (1993) A ticket to ride: peptide radiopharmaceuticals. J Nucl Med 34: 2253–2263Google Scholar
  15. Gadiot G, de Kerviler E, Le Guludec D, Camhaji B, Sobhani I, Ruszniewski P, Mignon M (1993) In patients with the Zollinger-Ellison syndrome (ZES) the main interest of somatostatin receptor scintigraphy ( SRS) is to detect previously unknown metastases. Gastroenterology 104: A298Google Scholar
  16. Heiman ML, Murphy WA, Coy DH (1987) Differential binding of somatostatin agonists to somatostatin receptors in brain and adenohypophysis. Neuroendocrinology 45: 429PubMedCrossRefGoogle Scholar
  17. Heitz P, Klöppel G (1987) Endokrine Tumoren des Pankreas and des Duodenum. Verh Dtsch Ges Pathol 71: 202–221PubMedGoogle Scholar
  18. Höring E, Räth U, Rucker S, von Gaisberg U, Meincke J, Walendzik J, Dörr U, Bihl H (1994) Somatostatinrezeptor-Szintigraphie in der Primärdiagnostik and Nachsorge bei Gastrinomen. Dtsch Med Wochenschr 119: 367–374PubMedCrossRefGoogle Scholar
  19. Joseph K, Stapp J, Reinecke J, Skamel HJ, Höffken H, Neuhaus C, Lenze H, Trautmann ME, Arnold R (1993) Receptor scintigraphy with 111In-pentetreotide for endocrine gastroenteropancreatic tumors. Hormone Metab Res 27 [Suppl]: 28–35Google Scholar
  20. Kirchner B, Hillman A, Lottes G, Sciuk J, Bartenstein P, Winkelmann W, Schober O (1993) Intraoperative, probeguided curettage of osteid osteoma. Eur J Nucl Med 20: 609–613PubMedCrossRefGoogle Scholar
  21. Kluxen F, Bruns C, Lübbert H (1992) Expression cloning of a rat brain somatostatin receptor eDNA. Proc Natl Acad Sci U S A 89: 4618–4622PubMedCrossRefGoogle Scholar
  22. Krenning EP, Bakker WH, Breeman WAP, Koper JW, Kooij PPM, Ausema L, Lameris JS, Lamberts SWJ (1989) Localization of endocrine related tumors with radioiodinated analogue of somatostatin. Lancet 1: 242–245PubMedCrossRefGoogle Scholar
  23. Krenning EP, Bakker WH, Kooij PPM, Breeman WAP, Oei HY, de Jong M, Reubi J-C, Visser TJ, Bruns C, Kwekkeboom DJ, Reijs AEM, van Hagen PM, Koper JW, Lamberts SWJ (1992a) Somatostatin receptor scintigraphy with Indium-111DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with Iodine-123-Tyr-3-octreotide. J Nucl Med 33: 652–658Google Scholar
  24. Krenning EP, Kwekkeboom DJ, Oei HY, Reubi JC, van Hagen PM, Kooij PPM, Reijs AEM, Lamberts SWJ (1992b) Somatostatin receptor imaging of endocrine gastrointestinal tumors. Schweiz Med Wochenschr 122: 634–637PubMedGoogle Scholar
  25. Krenning EP, Kwekkeboom DJ, Reubi J-C, van Hagen PM, van Eijck CHJ, Oei HY, Lambers SWJ (1993) 111In-Octreotide scintigraphy in oncology. Digestion 54 [Suppl 1] 11:84–87CrossRefGoogle Scholar
  26. Kwekkeboom DJ, Krenning EP, Bakker WH, Oei HY, Kooij PPM, Lamberts SWJ (1993) Somatostatin analogue scintigraphy in carcinoid tumours. Eur J Nucl Med 20: 283–292PubMedCrossRefGoogle Scholar
  27. Lamberts SWJ, Bakker WH, Reubi J-C, Krenning EP (1990a) Somatostatin-receptor imaging in the localization of endocrine tumors. N Engl J Med 232: 1246CrossRefGoogle Scholar
  28. Lamberts SWJ, Hofland LJ, van Koetsveld PM, Reubi J-C, Bruining HA, Bakker WH, Krenning EP (1990b) Parallel in vivo and in vitro detection of functional somatostatin receptors in human endocrine pancreatic tumors: consequences with regard to diagnosis, localization and therapy. J Clin Endocrinol Metab 71: 566PubMedCrossRefGoogle Scholar
  29. Lamberts SWJ, Krenning EP, Reubi J-C (1991) The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 12: 450–482PubMedCrossRefGoogle Scholar
  30. Markstein R, Stoeckli KA, Reubi J-C (1989) Differential effects of somatostatin on adenylate cyclase as functional correlates for different brain somatostatin receptor subpopulations. Neurosci Lett 104: 13PubMedCrossRefGoogle Scholar
  31. Morel G, Pelletier G, Heisler S (1986) Internalization and subcellular distribution of radiolabeled somatostatin-28 in mouse anterior pituitary tumor cells. Endocrinology 119: 1972PubMedCrossRefGoogle Scholar
  32. O’Caroll AM, Lolait SJ, König M, Mahan LC (1992) Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin-28. Mol Pharmacol 42: 939–946Google Scholar
  33. Patel YC, Murthy KK, Escher EE, Banville D, Spiess J, Srikant CB (1990) Mechanism of action of somatostatin: an overview of receptor function and studies of the molecular characterization and purification of somatostatin receptor proteins. Metabolism 39: 63–69PubMedCrossRefGoogle Scholar
  34. Pauwels S, Jamar F, Leners N, Fiasse R (1992) Efficacy of 111In-pentetreotide scintigraphy in endocrine gastroentero-pancreatic ( GEP) tumors. Gastroenterology 102: A387Google Scholar
  35. Perkins A (1993) Perioperative nuclear medicine. Editorial. Eur J Nucl Med 20: 573–575Google Scholar
  36. Reichlin, S (1983) Somatostatin. N Engl J Med 309:1495–1501, 1556–1563Google Scholar
  37. Reubi J-C (1984) Evidence of two somatostatin-14 receptor types in rat brain cortex. Neurosci Lett 49: 259PubMedCrossRefGoogle Scholar
  38. Reubi J-C, Landolt AM (1984) High density of somatostatin receptors in pituitary tumors from acromegalic patients. J Clin Endocrinol Metab 59: 1148–1151PubMedCrossRefGoogle Scholar
  39. Reubi J-C, Maurer R (1985) Antoradiographic mapping of somatostatin receptors in the rat central nervous system and pituitary. Neuroscience 15: 1183–1193PubMedCrossRefGoogle Scholar
  40. Reubi J-C, Perrin M, Rivier J et al (1981) High affinity binding sites for a somatostatin28 analog in rat brain. Life Sci 28: 2191–2198PubMedCrossRefGoogle Scholar
  41. Reubi J-C, Häcki WH, Lamberts SWJ (1987a) Hormone-producing gastrointestinal tumors contain a high density of somatostatin receptors. J Clin Endocrinol Metab 65: 1127–1134PubMedCrossRefGoogle Scholar
  42. Reubi J-C, Probst A, Cortes R, Palacios JM (1987b) Distinct topographical localisation of two somatostatin receptor subpopulations in the human cortex. Brain Res 406: 391PubMedCrossRefGoogle Scholar
  43. Reubi J-C, Krenning E, Lamberts SWJ, Kvols L (1990a) Somatostatin receptors in malignant tissues. J Steroid Biochem Mol Biol 37: 1073–1077PubMedCrossRefGoogle Scholar
  44. Reubi J-C, Kvols L, Krenning E, Lamberts SWJ (1990b) Distribution of somatostatin receptors in normal and tumor tissue. Metabolism 39 [Suppl 2]: 78–81PubMedCrossRefGoogle Scholar
  45. Reubi J-C, Kvols LK, Waser B, Nagorney DM, Heitz PU, Charboneau JW, Reading CC, Moertel CG (1990c) Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res 50: 5960Google Scholar
  46. Reubi J-C, Maurer R, von Werder K, Torhorst J, Klijn JGM, Lamberts SWJ (1990d) Somatostatin receptors in human endocrine tumors. Cancer Res 47: 551–558Google Scholar
  47. Rohrer L, Raulf F, Bruns C, Buettner R, Hofstaedter F, Schüle R (1993) Cloning and characterization of a fourth human somatostatin receptor. Proc Natl Acad Sci U S A 90: 4196–4200PubMedCrossRefGoogle Scholar
  48. Sardi A, Workman M, Mojzisik C, Hinkle G, Nieroda C, Martin EW (1989) Intra-abdominal recurrence of colorectal cancer detected by radioimmunoguided surgery (RIGS system). Arch Surg 124: 55–59PubMedGoogle Scholar
  49. Scherübl H, Bäder M, Fett U, Hamm B, Schmidt-Gayk R, Koppenhagen K, Dop F-J, Riecken EO, Wiedenmann B (1993) Somatostatin-receptor imaging of neuroendocrine gastroenteropancreatic tumors. A new, diagnostically relevant procedure. Gastroenterology 105: 1705–1709PubMedGoogle Scholar
  50. Schönbrunn A, Tashjian A (1978) Characterization of functional receptors for somatostatin in rat pituitary cells in culture. J Biol Chem 253: 6483Google Scholar
  51. Selverstone B, Sweet WH, Robinson CV (1949) The clinical use of radioactive phosphorous in the surgery of brain tumors. Ann Surg 130: 643–651CrossRefGoogle Scholar
  52. Sreedharan SP, Kodama KT, Peterson KE, Goetzl EJ (1989) Distinct subsets of somatostatin receptors on cultured human lymphocytes. J Biol Chem 264: 949–953PubMedGoogle Scholar
  53. Srikant CB, Patel YC (1981) Receptor binding of somatostatin-28 is tissue specific. Nature 294: 259–260PubMedCrossRefGoogle Scholar
  54. Srikant CB, Patel YC (1986) Somatostatin receptors on rat pancreatic acinar cells. Pharmacological and structural characterization and demonstration of down regulation in streptozotocin diabetes. J Biol Chem 261: 7690–7696PubMedGoogle Scholar
  55. Srikant CB, Patel YC (1987) Somatostatin receptor: evidence for structural and functional heterogeneity. In: Reichlin S (ed) Somatostatin, basic and clinical aspects. Plenum, New York, pp 89–102Google Scholar
  56. Stefanini P, Carboni M, Patrassi N, Basoli A (1974) Beta-islet tumors of the pancreas: results of a study on 1067 cases. Surgery 75: 597PubMedGoogle Scholar
  57. Van Noorden S, Polak JM, Pearse AGE (1977) Single cellular origin of somatostatin and calcitonin in the rat thyroid gland. Histochemistry 53: 243–247PubMedCrossRefGoogle Scholar
  58. Viguerie N, Tahiri-Jouti N, Esteve JP et al (1988) Fuctional somatostatin receptors on a rat pancreatic acinar cell line. Am J Physiol 255: G113 - G120PubMedGoogle Scholar
  59. Wang HL, Bogen C, Reisine T, Dichter M (1989) Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc Natl Acad Sci U S A 86: 16Google Scholar
  60. Weckbecker G, Raulf F, Stolz B, Bruns C (1993) Somatostatin analogs for diagnosis and treatment of cancer. Pharmacol Ther 60: 245–264PubMedCrossRefGoogle Scholar
  61. Wiedenmann B, Gregor M (1991) Empfehlungen zur Diagnostik and Therapie von Karzinoiden ( Neuroendokrinen epithelialen Tumoren) im Raum Berlin. Berl Arztebl 104: 182–183Google Scholar
  62. Woolfenden JM, Barber BH (1989) Radiation detector probes for tumor localization using tumor-seeking radioactive tracers. Am J Roentgenol 153: 35–39Google Scholar
  63. Yamada Y, Ito S, Matsubara Y, Kobayashi S (1977) Immunohistochemical demonstration of somatostatin-containing cells in the human, dog and rat thyroids. Tohoku J Exp Med 122: 87–92PubMedCrossRefGoogle Scholar
  64. Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S (1992a) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract and kidney. Proc Natl Acad Sci U S A 89: 251–255PubMedCrossRefGoogle Scholar
  65. Yamada Y, Reisine T, Law SF, Ihara Y, Kubota A, Kagimoto S, Seino M, Seino Y, Bell GI, Seino S (1992b) Somatostatin receptors, an expanding gene family: cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase. Mol Endocrinol 6: 2136–2142PubMedCrossRefGoogle Scholar
  66. Zimmer T, Ziegler K, Bäder M, Fett U, Hamm B, Riecken E-O, Wiedenmann B (1994) Localisation of neuroendocrine tumors of the upper gastrointestinal tract. Gut 35: 471–475PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. Bäder
    • 1
  • K. Koppenhagen
    • 1
  1. 1.Department of Radiology and Nuclear MedicineUniversity Medical Center Benjamin Franklin, Free University of BerlinBerlinGermany

Personalised recommendations