Microsatellite Dna Polymorphism Analysis in a Case of Illegal Cattle Purchase

  • D. Beamonte
  • E. Valverde
  • A. Guerra
  • B. Ruíz
  • J. Alemany
Conference paper
Part of the Advances in Forensic Haemogenetics book series (HAEMOGENETICS, volume 6)

Abstract

Traditionally, illegal animal purchasing has been difficult to prove, especially in two cases: Young animals not-registered yet in the official genealogical book, and those animals not registered because they don’t belong to any pure breed. Microsatellite Short Tandem Repeat (STR) DNA polymorphism is currently used in human forensic medicine as a powerful tool to solve criminal cases with a high degree of accuracy in a short period of time. However, this practice is not common in criminal cases affecting animals of different species.

Keywords

Phenol Chloroform Electrophoresis Hines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fries, R. et al. Genomics, Vol 8, 1990, pp. 403–406.PubMedCrossRefGoogle Scholar
  2. [2]
    Fries, R. et al. Mammalian Genome, Vol. 4, 1993, pp. 405–428.Google Scholar
  3. [3]
    Ellegren, H. et al. Animal Genetics, Vol. 23, 1992, pp. 133–142.PubMedCrossRefGoogle Scholar
  4. [4]
    Coppieters, W. et al. Animal Genetics, Vol. 24, 1993, pp. 163–70.PubMedCrossRefGoogle Scholar
  5. [5]
    Moran, C. J. Hered, Vol 84, 1993, pp. 274–80.PubMedGoogle Scholar
  6. [6]
    Ellegren, H. et al. Genomics, Vol.16, 1993, pp. 431–439.PubMedCrossRefGoogle Scholar
  7. [7]
    Dietz, A.B. et al. Animal Genetics, Vol. 24, 1993, pp. 433–436.PubMedCrossRefGoogle Scholar
  8. [8]
    Crawford, A.M. et al. Animal Genetics, Vol 21, 1990, pp. 433–434.PubMedCrossRefGoogle Scholar
  9. [9]
    Ostrander, A., E. et al. Genomics, Vol. 16, 1993, pp. 207–213.PubMedCrossRefGoogle Scholar
  10. [10]
    Hiñes, H.C. et al. Dairy Sciences, Vol. 64, 1981, pp 71–76.CrossRefGoogle Scholar
  11. [11]
    Harley, C. S. Animal Genetics, Vol. 22, 1991, pp. 259–277.Google Scholar
  12. [12]
    Morris, S. J. Dairy Sciences, Vol. 73, 1990, pp. 2628–2646.CrossRefGoogle Scholar
  13. [13]
    Trommelen, J.M. et al. Journal of Dairy Sciences, Vol, 76, 1993, pp. 1403–1411.CrossRefGoogle Scholar
  14. [14]
    Groenen, M.A. et al. Immunogenetics, Vol. 31, 1990, pp.37–44.PubMedCrossRefGoogle Scholar
  15. [15]
    Kemp, S.J. et al. Animal Genetics, Vol. 23, 1992, pp. 184–184.PubMedCrossRefGoogle Scholar
  16. [16]
    Sasso, M.P. et al. Nucleics Acids Res. Vol. 19, 1991, pp. 6469–6474.CrossRefGoogle Scholar
  17. [17]
    Moore, S.S. and Byrne, K. Animal Genetics. Vol. 23, 1992, p. 574.PubMedCrossRefGoogle Scholar
  18. [18]
    Moore, S.S. et al. Animal Genetics, Vol. 23, 1992, pp. 463–467.PubMedCrossRefGoogle Scholar
  19. [19]
    Himmler, A. et al. Molecullar and Cellular Biology, Vol. 9. 1989, pp. 1381–1388.Google Scholar
  20. [20]
    Beamonte D. et al. (submitted).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • D. Beamonte
    • 1
  • E. Valverde
    • 1
  • A. Guerra
    • 1
  • B. Ruíz
    • 1
  • J. Alemany
    • 1
  1. 1.PharmaGen s.a.MadridSpain

Personalised recommendations