Advertisement

Allele Frequencies of D1S80, LDLR, GYPA, D7S8, GC, HBGG and SE 33 in Polish Population Sample

  • D. Miścicka-Śliwka
  • K. Śliwka
  • A. Syroczyńska
  • T. Grzybowski
  • B. Baranowska
  • J. A. Berent
Part of the Advances in Forensic Haemogenetics book series (HAEMOGENETICS, volume 6)

Abstract

The application of any new genetic system in forensic casework requires a sufficiently large data base of population. In the present study, we report the allele frequency distribution for seven different loci in the Polish population of Pomerania-Kujawy Region. Five of these markers are coamplified simultaneously using the Amplitype PM kit (Perkin-Elmer): low density lipoprotein receptor (LDLR), glycophorin A (GYPA), hemoglobin G gammaglobin (HBGG), D7S8 linked to cystic fibrosis locus and Group specific Component (GC). The other two loci are VNTR D1S80 (Nakamura 1988) and STR ACTBP2 (SE33) (Polymeropoulos 1992). In addition, we have sequenced selected SE 33 alleles to determine possible sequence structure variations which may cause the allele designation difficult.

Keywords

Large Data Base Allele Frequency Distribution Cycle Sequencing Reaction Group Specific Component Forensic Casework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen R, Graves G, Budowle B (1989) Polymerase chain reaction amplification products separated on rehydratable Polyacrylamide gels and stained with silver. Bio Tech 7: 736–744Google Scholar
  2. Hochmeister MN, Budowle B, Barrer UV, Dimhofer R (1994) Swiss population data on the loci HIA DQ alpha, LDLR, GYPA, HBGG, D7S8, GC andDlS80. JForensic Sci 67: 175–184CrossRefGoogle Scholar
  3. Markiewicz WT, Groger G, Rosch R, Zebrowska A, Seliger H (1992) A new method of synthesis of fluorescently labelled oligonucleotides and their application in DNA sequencing. Nucleosides Nucleotides 11:1703–1711CrossRefGoogle Scholar
  4. Moller A, Brinkmann B (1994) Locus ACTBP2 (SE33). Sequence data reveal considerable polymorphism. In J Leg Med 106: 262–267Google Scholar
  5. Moos M, Gallwitz D (1983) Structure of two human beta-actin-related processed genes one of which is located next to simple repetitive sequence. EMBO J 2: 757–761PubMedGoogle Scholar
  6. Nakamura Y, Carlson M, Krapcho K, White R (1988) Isolation and mapping of polymorphic DNA sequence (pMCT 118) on chromosome 1p (D1S80). Nucl Acids Res 16: 9364PubMedCrossRefGoogle Scholar
  7. Pinheiro MF, Pontes ML, Costa P (1994) Use of the Amplitype PM coamplification system on forensic analysis. In: Mangin P, Ludes B (eds) Acta Medicinae Legalis, vol XLIV. Springer, Berlin Heidelberg New Yorkp 81Google Scholar
  8. Polymeropoulos MJ, Rath DS, Xiao H, Merril CR (1992) Tetranucleotide repeat polymorphism at the human beta-actin related pseudogene H-beta-Ac-psi-2 (ACTBP2). Nucl Acids Res 20:1432PubMedCrossRefGoogle Scholar
  9. Urquart A, Kimpton CP, Gill P (1993) Sequence variability of the tetranucleotide repeat of the human beta-actin related pseudogene H-beta-Ac-psi-2 (ACTBP2). Hum Genet 92: 637–638CrossRefGoogle Scholar
  10. Wiegand P, Budowle B, Rand S, Brinkmann B (1993) Forensic validation of the STR systems SE33 and TCI 1. M J Leg Med 105: 315–320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • D. Miścicka-Śliwka
    • 1
  • K. Śliwka
    • 1
  • A. Syroczyńska
    • 1
  • T. Grzybowski
    • 1
  • B. Baranowska
    • 1
  • J. A. Berent
    • 1
  1. 1.Forensic Medicine InstituteThe Ludwik Rydygier’s University School of Medical Sciences in BydgoszczBydgoszczPoland

Personalised recommendations