Skip to main content

The T*-Integral: Definition and Use for Predicting Damage Accumulation and Fracture

  • Conference paper
Contemporary Research in Engineering Science
  • 256 Accesses

Abstract

This paper reviews the T*-integral and discusses its use as a unified fracture parameter. The origins of T* as well as its physical basis are explored. The practical calculation of T* is discussed in some detail since there has been confusion over the years regarding the proper calculation method in order to ensure that numerical errors do not affect its performance. Examples of the use of T* to characterize elastic-plastic and high temperature creep fracture are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brust, F. W., Nakagaki, M., and Gilles, P., “Comparison of Elastic-Plastic Fracture Mechanics Techniques,” ASTM STP 1074, pp. 448–469, 1990.

    Google Scholar 

  2. Lemaitre, J., and Chaboche, J. L., Mechanics of Solid Materials, Cambridge University Press, 1990.

    MATH  Google Scholar 

  3. Eshelby, J. D., “The Continuum theory of Lattice Defects”, in Solid State Physics, Vol. 3, Academic Press, New York, pp. 79–144, 1956.

    Google Scholar 

  4. Cherepanov, G. P., “Crack Propagation in Continuous Media”, Appl Math. Mech., Vol. 31 (3), pp. 467–488, 1967.

    MathSciNet  Google Scholar 

  5. Rice, J. R., “A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks”, Journal of Applied Mechanics, Vol. 35, pp. 379–386, 1968.

    Article  Google Scholar 

  6. Atluri, S. N., “Energetic Approaches and Path-Independent Integrals”, in Computational Methods in the Mechanics of Fracture, Ed. by S. N. Atluri, North Holland Publishers, pp 123–165, 1986.

    Google Scholar 

  7. Kim, K. S. and Orange, T. W., “A Review of Path-Independent Integrals in Elastic- Plastic Fracture Mechanics”, Fracture Mechanics.’Eighteenth Symposium, ASTM STP 945, American Society for Testing and Materials, Philadelphia, pp. 713–729, 1988.

    Google Scholar 

  8. Brust, F. W., Nakagaki, M., and Springfield, C. W., “Integral Parameters for Thermal Fracture”, Engineering Fracture Mechanics, Vol. 33, No. 4, pp. 561–579, 1989.

    Article  Google Scholar 

  9. Cherepanov, G. P., “A Remark on The Dynamic Invariant Or Path-Independent Integral,” Int. J. Solids and Structures. Vol. 25, No. 11, pp. 1267–1269, 1989.

    Article  MATH  Google Scholar 

  10. Brust, F. W., Nishioka, T., Atluri, S. N., and Nakagaki, M., “Further Studies on Elastic-Plastic Stable Fracture Utilizing T* Integral”, Engineering Fracture Mechanics, Vol. 22, pp 1079–1103, 1985.

    Article  Google Scholar 

  11. Atluri, S. N., “Path Independent Integrals in Finite Elasticity and Inelasticity, With Body Forces, Inertia, and Arbitrary Crack-Face Conditions”, Engineering Fracture Mechanics, 16, pp. 341–364, 1982.

    Article  Google Scholar 

  12. Willis, J. R., “Equations of Motion for Propagating Cracks”, in The Mechanics and Physics of Fracture, The Metal Society, pp. 57–67, 1975.

    Google Scholar 

  13. Kostylev, V. I. and Margolin, B. Z., “Application of T-Integral to the Crack Propagation Analysis Under the Quasi-Static and Dynamic Loading”, presented at ICF-8, Kiev, Ukraine, June 1993. To appear in Conference Proceedings.

    Google Scholar 

  14. Kanninen, M. F., and Popelar, C. F., Advanced Fracture Mechanics, Oxford University Press, New York, NY, 1985.

    MATH  Google Scholar 

  15. Kanninen, M. F., “A Critical Appraisal of Solution Techniques in Dynamic fracture Mechanics”, Numerical Methods in Fracture Mechanics, Ed. D. R. J. Owen and A. R. Luxmoore, Pineridge Press, pp. 612–634, 1978.

    Google Scholar 

  16. Brust, F. W., McGowan, J. J., and Atluri, S. N., “A Combined Numerical/Experimental Study of Ductile Crack Growth Alter a Large Unloading Using T*, J, and CTOA Criteria”, Engineering Fracture Mechanics, Vol. 23, No. 3, pp. 537–550, 1986.

    Article  Google Scholar 

  17. Brust, F. W. and Atluri, S. N., “Studies on Creep Crack Growth Using the T* Integral,” Engineering Fracture Mechanics, Vol. 23, No. 3, pp. 551–574, 1986.

    Article  Google Scholar 

  18. Okada, H., Suzuki, Y., Ma, L., Lam, P. W., Pyo, C. R., Atluri, S. N., Kobayashi, A. S., and Tan, P., “Plane Stress Crack Growth and T* Integral - An Experimental-Numerical Analysis”, to be presented at the ICES-95, Hawaii, August, 1995. Also to appear in the proceedings.

    Google Scholar 

  19. Kim, K. S., et al., “Elevated Temperature Crack Growth,” Final Report to NASA Lewis Research Center, November 1992.

    Google Scholar 

  20. Liu, C. D., Han, Y. F., and Yan, M. G., “The T*-Integral as a Characteristic Parameter for Large Scale Creep Crack Growth”, Engineering Fracture Mechanics, Vol. 43 (5), p. 827–836, 1992.

    Article  Google Scholar 

  21. Krishnaswamy, P., Brust, F. W., and Ghadiali, N. D., “A Finite Element Algorithm to Study Creep Crack Growth Based on the Creep Hardening Surface”, Intl J for Num Meth in Eng, In Press.

    Google Scholar 

  22. Brust, F. W., and Majumdar, B. S., “Load History Effects on Creep Crack Growth”, ng Fracture Mech, Vol 49, No. 6, pp. 809–837, December, 1994.

    Google Scholar 

  23. Brust, F. W., “Investigations of High Temperature Damage and Crack Growth Under Variable Load Histories”, Intl J of Solids and Structures, In Press.

    Google Scholar 

  24. Brust, F. W., “Numerical Modeling and Experiments of Creep Crack Growth Under Cyclic Loading”, ASTM STP 1256, American Society for Testing and Materials, Philadelphia, Pa, 1995.

    Google Scholar 

  25. Pyo, C. R., Okada, H., and Atluri, S. N., “Residual Strength Prediction for Aircraft Panels with Multiple Site Damage, Using the EPFEAM for Stable Crack Growth Analysis”, FAA Center of Excellence Report by Georgia Institute of Technology, November, 1994.

    Google Scholar 

  26. Pyo, C. R., Okada, H., and Atluri, S. N., “An Elastic-Plastic Finite Element Alternating Method for Analyzing Wide-Spread Fatigue Damage in Aircraft Structures”, FAA Center of Excellence Report by Georgia Institute of Technology, November, 1994.

    Google Scholar 

  27. Shenoy, V. B, Potyondy, D. O., and Atluri, S. N., “A Methodology for Computing Nonlinear Fracture Parameters for a Bulging Crack in a Pressurized Aircraft Fuselage”, FAA Center of Excellence Report by Georgia Institute of Technology, March, 1994.

    Google Scholar 

  28. Singh, R., Park, J. H., and Atluri, S. N., “Residual Life and Strength Estimates of Aircraft Structural Components with MSD/MED”, Proceedings of the FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, Ed. C. E. Harris, pp. 771–784, Sept. 1994.

    Google Scholar 

  29. Nishioka, T., and Atluri, S. N., Analytical Solution for Embedded elliptical cracks, and Finite Element Alternating Method for Elliptical Surface Cracks, Subjected to Arbitrary LoadingsEngineering Fracture Mechanics, Vol. 17, pp. 247–268, 1983.

    Google Scholar 

  30. Atluri, S. N., Harris, C. E., Hoggard, A., Miller, N. A., and Sampath, S. G., Durability of Metal Air Frame Structures, Technical Publications, Atlanta, Ga., 1992.

    Google Scholar 

  31. Atluri, S. N., Sampath, S. G., and Tong, P., Structural Integrity of Aging Airplanes, Berlin, Heidelberg, New York, Springer, 1991.

    Google Scholar 

  32. Broek, D., “The Effects of Multi-site Damage on the Arrest Capability of Aircraft Fuselage Structures”, FractuREearch Technical Report No. 9302, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brust, F.W. (1995). The T*-Integral: Definition and Use for Predicting Damage Accumulation and Fracture. In: Batra, R.C. (eds) Contemporary Research in Engineering Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80001-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80001-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80003-0

  • Online ISBN: 978-3-642-80001-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics