From Shakedown Theory to Fatigue Fracture of Ductile Materials

  • Y. J. Huang
  • E. Stein
Conference paper


This work deals with shakedown theorems of ductile materials and their application in fatigue fracture. Based on experimental observation, a fatigue crack is considered as a sharp notch with root radius being a material constant at threshold stress level. The reason for no crack propagation is assumed due to shakedown of the cracked body. Thus, a transition from shakedown to fatigue fracture is achieved. A simple, but reasonabl criterion for crack threshold has been worked out by using shakedown theorem. It is found that the fatigue threshold of a cracked body is proportional to the initial yield stress of the material multiplied by the square root of the effective crack tip radius. To verify the correctness of the analysis, about 50 sets of fatigue experimental data for ductile materials are collected from litereture, these data are then compared with the predicted results. Very good agreement between experiments and analyses has been achieved.


Stress Intensity Factor Notch Root Kinematic Hardening Fatigue Threshold Notch Root Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Melan (1938) Der Spannungszustand eines Mises-Henckysehen Kontinuums bei veränderlicher Belastung. Sitzber. Akad. Wiss. Wien, IIa 147, 73–78.Google Scholar
  2. [2]
    E. Melan (1938) Zur Plastizität des räumlichen Kontinuums. Ing.-Arch. 8, 116–126.CrossRefGoogle Scholar
  3. [3]
    W. Prager (1956). Shakedown in elastic-plastic media subjected to cycles of load and temperature, Proc. Symp. Plasticita nella Scienza delle Costruzioni, Bologna, 239–244.Google Scholar
  4. [4]
    V. I. Eozenblum (1957) On shakedown of uneven heated elastic-plastic bodies (in Russian), Izw. Akad. Nauk SSSR. OTN, Mekh. Mash. 7, 136–138.Google Scholar
  5. [5]
    G. Ceradini (1969). Sull’ adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche, Giorn. Genio Civile 106, No. 4 /5, 239–250.Google Scholar
  6. [6]
    J. A. König (1969). A shakedown theorem for temperature dependent elastic moduli, Bull. Acad. Polon. Sci. Ser. Sci. Tech. 17, 161–165.Google Scholar
  7. [7]
    G. Maier (1972). A shakedown matrix theory allowing for work hardening and second-order geometric effects, Proc. Symp. Foundations of Plasticity, Warsaw.Google Scholar
  8. [8]
    L. Corradi and G. Maier (1973). Inadaption theorems in the dynamics of elastic-workhardening structures, Ing.-Arch. 43, 44–57.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    D. Wei chert (1986). On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures, Int. J. Plasticity 2, 135–148.CrossRefMATHGoogle Scholar
  10. [10]
    B. G. Neal (1950). Plastic collapse and shakedown theorems for structures of strain-hardening material, J. Aero. Sci. 17, 297–306.MathSciNetGoogle Scholar
  11. [11]
    G. Masing (1924). Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen, Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern 3, 231–239.Google Scholar
  12. [12]
    E. Stein, G. Zhang and J. A. König (1990) Micromechanical modeling and computation of shakedown with nonlinear kinematic hardening including examples for 2-D problems. Axelrad, D.R. and Muschik, W. (ed.): Recent Developments in Micromechanics, Springer Verlag, Berlin.Google Scholar
  13. [13]
    E. Stein, G. Zhang and J. A. König (1992) Shakedown with nonlinear hardening including structural computation using finite element method. Int. J. Plasticity 8, 1–31.CrossRefMATHGoogle Scholar
  14. [14]
    E. Stein and G. Zhang (1992) Theoretical and numerical shakedown analysis for kinematic hardening materials. Proc. 3rd Conf. on Computational Plasticity, Barcelona, 1–25.Google Scholar
  15. [15]
    E. Stein, G. Zhang and Y. Huang (1993) Modeling and computation of shakedown problems for nonlinear hardening materials. Computer Methods in Mechanics and Engineering 103 No. 1-2, 247–272.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    E. Stein and Y. Huang (1994) An analytical method to solve shakedown problems with linear kinematic hardening materials. Int. J. of solids and structures 31, No. 18, 2433–2444.CrossRefMATHGoogle Scholar
  17. [17]
    D. Taylor (1989) Fatigue Thresholds. Butterworths.Google Scholar
  18. [18]
    J. A. König (1987). Shakedown of elastic-plastic structures, PWN-Polish scientific publishers, Warsaw 1987.Google Scholar
  19. [19]
    J. Bree (1967). Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast- nuclear-reactor fuel elements, J. Strain Analysis 2. 226–238.CrossRefGoogle Scholar
  20. [20]
    J. Groß-Weege (1988). Zum Einspielverhalten von Flächentragwerken, Ph.D. thesis, Inst, für Mech., Ruhr-Universität Bochum.Google Scholar
  21. [21]
    H. Neuber (1958) Kerbspannungslehre. Springer Publisher, Heidelberg.MATHGoogle Scholar
  22. [22]
    P. C. Paris and G. C. Sih (1965). Fracture toughness testing and its applications. ASTM STP 381, American Society for testing and materials, 30–83.Google Scholar
  23. [23]
    Y.J. Huang and E. Stein. Shakedown of a CT-Specimen. Experimental, Analytical and Numerical Investigations. Accepted for publication in Journal of Strain AnalysisGoogle Scholar
  24. [24]
    Y.J. Huang, H. Xie and E. Stein (1995). Fractal Eifect of the Crack Propagation Path on Fatigue Behaviours. Submitted to Fatigue Fract. Engng Mater. Struct.Google Scholar
  25. [25]
    M. H. EL Haddad, T. H. Topper and K. N. Smith (1979) Prediction of non propagating cracks. Engineering fracture mechanics 11, 573–584.CrossRefGoogle Scholar
  26. [26]
    G. R. Yoder, L. A. Cooley and T. W. Crooker (1979) Quantitative analysis of microstructural effects on crack growth in widmanstten Ti-6A1-4V and Ti-8Al-lMo-lV. Engineering fracture mechanics 11, 805–816.CrossRefGoogle Scholar
  27. [27]
    D. N. Lai and V. Weiss (1978) A notch analysis of fracture approach to fatigue crack propagation. Metallurgical Transactions A 9A, 413 - 426.CrossRefGoogle Scholar
  28. [28]
    N. E. Frost (1960) Notch effects and the critical alternating stress required to propagate a crack in an aluminium alloy subject to fatigue loading Journal of mechanical engineering science 2 No. 2, 109–119.Google Scholar
  29. [29]
    A. R. Jack and A. T. Price (1970) The initiation of fatigue cracks from notches in mild steel plates International journal of fracture mechanics 6 No. 4, 401 - 409.Google Scholar
  30. [30]
    R. E. Swanson, A. W. Thompson and I. M. Bernstein (1986) Effect of notch root radius on stress intensity in mode I and Mode III loading Metallurgical Transactions A 17A, 1633–1637.Google Scholar
  31. [31]
    N. E. Dowling (1979) Fatigue at notches and the local strain and fracture mechanics approaches. Fracture mechanics, ASTM STP 677, ed. C. W. Schmith. 247–273.Google Scholar
  32. [32]
    P. Kuhn and H. F. Hardrath (1952) An engineering method for estimating notch-size effect in fatigue tests on steel. NAC A Technical note 2805.Google Scholar
  33. [33]
    R. O. Ritchie (1979) Near-threshold fatigue-crack propagation in steels. Int. Metals Reviews 5-6, 205–230.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Y. J. Huang
    • 1
  • E. Stein
    • 1
  1. 1.Institut für Baumechanik und Numerische MechanikUniversität HannoverHannoverGermany

Personalised recommendations