Advertisement

Spatial Fibre and Surface Processes — Stereological Estimations and Applications

  • Konrad Sandau
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

The aim of this paper is to give an introduction to the treatment of spatial fibre and surface processes especially under the aspects of modelling and stereology. In the last two decades mathematical tools were developed for modelling spatial fibres and surfaces as they occur in biology or other scientific disciplines. These tools also allow to quantify characteristics of the objects like length or surface area. In quantitative microscopy actually the objects are sectioned. Therefore the spatial characteristics have to be derived from plane sections. This is the fundamental problem treated in stereology, a mathematical discipline, collecting methods to relate the measurements on sections to the characteristics of three-dimensional structures. Several examples demonstrate in which way theory and applications of this kind can be combined passing the three stages ’modelling, stereology, statistics’.

Keywords

Point Process Joint Distribution Surface Process Test Line Test Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BADDELEY, A.J. (1984): Vertical sections. In: Ambartzumian & Weil (Eds.): Stochastic Geometry, Geometric Statistics, Stereology. Teubner, Leipzig, 43–52.Google Scholar
  2. BADDELEY, A.J., GUNDERSEN, H.J.G., CRUZ-ORIVE, L.M. (1986): Estimation of surface area from vertical sections.J. Microsc., 142: 259–276.CrossRefGoogle Scholar
  3. BENEŠ, V. (1993): On anisotropic sampling in stereology. Acta Stereol., 12/2: 185–190. Google Scholar
  4. BENEŠ, V. (1994): On second-order formulas in anisotropic stereology. Adv. in Appl. Prob., submitted.Google Scholar
  5. BINGHAM, C., MARDIA, K.V. (1978): A small-circle distribution on the sphere. Biometrika, 65: 379–389. CrossRefGoogle Scholar
  6. BODZIONY, J., KONSTANKIEWICZ, K., MLYNARCZUK, M., RATAJCZAK, T. (1993): Evaluation of the pore structure of soil specimens. Acta Stereol., 12/2: 243–248. Google Scholar
  7. CHADCEUF, J., BENES, V. (1994): On some estimation variances in spatial statistics. Kybernetika, 3, to appear.Google Scholar
  8. CRUZ-ORIVE, L. M., HOWARD, C. V. (1991): Estimating the length of a bounded curve in three dimensions using total vertical projections. J. Microsc., 163: 101–113. CrossRefGoogle Scholar
  9. GOKHALE, A.M. (1990): Unbiased estimation of curve length in 3-D using vertical slices. J. Microsc., 159: 133–141. CrossRefGoogle Scholar
  10. HAHN, U., SANDAU, K. (1989): Precision of surface area estimation using spatial grids. Acta Stereol., 8/2: 425–430. Google Scholar
  11. HASSELAGER, E. (1986): Surface exchange area of the porcine placenta: morphometry of anisotropic interdigitating microvilli. J. Microsc., 41: 91–100. CrossRefGoogle Scholar
  12. HOWARD, C.V., CRUZ-ORIVE, L. M., YAEGASHI H., (1992): Estimating neuron dendritic length in 3D from total vertical projections and from vertical slices. Acta Neurol Scand. Supply., 137: 14–19. CrossRefGoogle Scholar
  13. JENSEN, E.B., BADDELEY, A.J., GUNDERSEN, H. J. G., SUNDBERG, R. (1985): Recent trends in stereology.Int. Stat. Review, 53: 99–108. CrossRefGoogle Scholar
  14. JENSEN, E.B., GUNDERSEN, H.J.G., OSTERBY, R. (1979): Determination of membrane thickness distribution from orthogonal intercepts.J. Microsc., 115: 19–33. CrossRefGoogle Scholar
  15. KENDALL, M.G. & MORAN, P.A.P. (1963): Geometrical Probability. Griffin, London.Google Scholar
  16. LANG, A.R.G. & MELHUISH, F.M. (1970): Lengths and diameters of plant roots in non-random populations by analysis of plane surfaces. Biometrics, 26: 421–431. Google Scholar
  17. MATHERON, G. (1975): Random Sets and Integral Geometry. J. Wiley & Sons, New York.Google Scholar
  18. MATHIEU, O., CRUZORIVE, L. M., HOPPELER, H., WEIBEL, E. R. (1983): Estimating length density and quantifying anisotropy in skeletal muscle capillaries. J. Microsc., 31: 131–146.CrossRefGoogle Scholar
  19. MATTFELDT, T. (1990): Stereologische Methoden in der Pathologie. G. Thieme Verlag, Stuttgart.Google Scholar
  20. MATTFELDT, T., MALL, G. (1984): Estimation of length and surface of anisotropic capillaries. J. Microsc., 35: 181–190. CrossRefGoogle Scholar
  21. MATTFELDT, T., MALL, G., GHAREHBAGHI, H. (1990): Estimation of surface area and length with the orientator. J. Microsc., 159: 301–317. CrossRefGoogle Scholar
  22. MAYHEW, T.M. (1981): On the relative efficiencies of alternative ratio estimators for morphometric analysis of cell membrane surface features. J. Microsc., 122: 7–14.CrossRefGoogle Scholar
  23. MECKE, J., NAGEL, W. (1980): Stationäre räumliche Faserprozesse und ihre Schnittzahlrosen. J. Information Processing and Cybernetics EIK, 16: 475–483. Google Scholar
  24. MECKE, J., STOYAN, D. (1980): Formulas for stationary planar fibre processes I – general theory. Statistics, Math. Operationsforschung und Statistik, 11: 267–279. Google Scholar
  25. MICHEL, R. P., CRUZ-ORIVE, L. M. (1988): Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area. J. Microsc., 150: 117–136. CrossRefGoogle Scholar
  26. MILES, R. M. (Ed.) (1987): Twenty-five years of stereology. Acta Stereol., 6/II, Ljubljana.Google Scholar
  27. MILES, R.E., DAVY, P. (1976): Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae.J. Microsc., 107: 211–226.CrossRefGoogle Scholar
  28. MONESTIEZ, P., KRETZSCHMAR, A., CHADCEUF, J. (1993): Modelling natural burrow systems in soil by fibre process: Monte-Carlo test on independence of fibre characteristics. Acta Stereol. 12/2, 237–242. Google Scholar
  29. MORAN, P.A.P. (1966): Measuring the length of a curve. Biometrika, 53: 359–364.Google Scholar
  30. PACHE, J.C., ROBERTS, N., VOCK, P., ZIMMERMANN, A., CRUZ-ORIVE, L. M. (1993): Vertical LM sectioning and parallel CT scanning designs for stereology: application to human lung. J. Microsc., 170: 9–24.CrossRefGoogle Scholar
  31. PAPE, H., RIEPE, L., SCHOPPER, J. R. (1987): Theory of self-similar network structures in sedimentary and igneous rocks and their investigation with microscopical and physical methods. J. Microsc., 148: 121–147.CrossRefGoogle Scholar
  32. POHLMANN, S., MECKE, J., STOYAN, D. (1981): Stereological formulas for stationary surface processes. Statistics, Math. Operationsforschung und Statistik, 12/3: 429–440. Google Scholar
  33. RIPLEY, B. D. (1981): Spatial Statistics. J. Wiley & Sons, New York.CrossRefGoogle Scholar
  34. RISS, J., GENTIER, S. (1989): Linear and areal roughness of non planar rock surfaces of fracture. Acta Stereol., 8/2: 677–682. Google Scholar
  35. SALTYKOV, S. A. (1945): Stereometric Metallography. 1st edition. State Publishing House for Metals Sciences, Moscow, (cited from Weibel, 1980).Google Scholar
  36. SANDAU, K. (1987a): Estimating the length density of roots using vertical sections. Acta Stereol., 6/1: 43–60. Google Scholar
  37. SANDAU, K. (1987b): How to estimate the area of a surface using a spatial grid. Acta Stereol., 6/3: 31–36. Google Scholar
  38. SANDAU, K. (1993): An estimation procedure for the joint distribution of spatial direction and thickness of flat bodies using vertical sections. Part I: Theoretical considerations. Biom. J., 35: 649–660.CrossRefGoogle Scholar
  39. SANDAU, K., VOGEL, H.J. (1993): An estimation procedure for the joint distribution of spatial direction and thickness of flat bodies using vertical sections. Part II: An application in soil micromorphology.Biom. J., 35: 661–675.CrossRefGoogle Scholar
  40. SANDAU, K., HAHN, U. (1994): Some remarks on the accuracy of surface area estimation using the spatial grid. J. Microsc., 173: 67–72. CrossRefGoogle Scholar
  41. SANTALO, L. A. (1976): Integral Geometry and Geometric Probability. Addison-Wesley.Google Scholar
  42. STEINHAUS, H. (1930): Zur Praxis der Rektifikation und zum Langenbegriff. Ber. Sachs. Akad. Wiss. Math. Nat. KL.,82: 120–130. Google Scholar
  43. STOYAN, D., GERLACH, W. (1987): Stereological determination of curvature distributions of spatial fibre systems.J. Microsc., 148: 297–305. CrossRefGoogle Scholar
  44. STOYAN D., KENDALL, W. S., MECKE, J. (1987): Stochastic Geometry and its Applications. Akademie Verlag, Berlin.Google Scholar
  45. VEDEL JENSEN E.B., KIEU, K. (1992): A note on recent research in second- order stereology. Acta Stereol. 11/1, 569–579. Google Scholar
  46. VOGEL, H. J., WELLER, U., BABEL, U. (1993): Estimating orientation and width of channels and cracks at soil polished blocks – a stereological approach. Geoderma, 56: 301–316. CrossRefGoogle Scholar
  47. WEIBEL E.R. (1979): Stereological Methods, Vol. I. Academic Press, London.Google Scholar
  48. WEIBEL E.R. (1980): Stereological Methods, Vol. II. Academic Press, London.Google Scholar
  49. WRIGHT, K., KARLSSON, B. (1983): Topographic quantification of non-planar localized surfaces. J. Microsc., 30: 37–51. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • Konrad Sandau
    • 1
  1. 1.Fachbereich Mathematik & NaturwissenschaftenFH DarmstadtDarmstadtGermany

Personalised recommendations