Analysis of Sales Data: A Neural Net Approach

  • F. Wartenberg
  • R. Decker
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


As an increasing interest of the scientific community is devoted to the application of neural networks to pattern recognition, forecasting and optimization, we will demonstrate how so-called Backpropagation Networks can be used to specify market response functions from sales data. The proceeding will be demonstrated by market share analysis. Against this background it is also shown how market diagnostics (e.g., market shares and elasticities) which are well-known to marketing managers can be calculated from a calibrated neural network. Finally, results from an empirical application including a comparison of the new approach with a traditional market share model are sketched.


Neural Network Market Share Sales Data Asymmetric Competition Conditional Logit Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cooper, L.G., and Nakanishi, M. (1988): Market-Share Analysis, Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
  2. Decker, R. (1994): Analyse und Simulation des Kaufverhaltens auf Konsumgütermärkten, Lang, Frankfurt.Google Scholar
  3. Decker, R., and Wartenberg, F. (1994): Neue Wege der Wettbewerbsanalyse im Einzelhandel. Markenartikel, 2, 46–51.Google Scholar
  4. Hanssens, D.M., Parsons, L.J., and Schultz, R.L. (1990): Market Response Models: Econometric and Time Series Analysis, Kluwer Academic Publishers, Boston.Google Scholar
  5. Hertz, J., Krogh, A., and Palmer, R.G. (1991): Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City.Google Scholar
  6. Howard, J.A., and Sheth, J.N. (1969): The Theory of Buyer Behavior, Wiley, New York.Google Scholar
  7. Hruschka, H. (1991): Einsatz künstlicher neuraler Netzwerke zur Datenanalyse im Marketing. Marketing ZFP, 4, 217–225.Google Scholar
  8. Mcfadden, D. (1974): Conditional Logit Analysis of Qualitative Choice Behavior, in: P. Zarembka (ed.): Frontiers in Econometrics, Academic Press, New York, 105–142.Google Scholar
  9. Naert, P.A., and Leeflang, P.S.H. (1978): Building Implementable Marketing Models, Leiden, Stenfert Kroese.Google Scholar
  10. Ronning, G. (1991): Mikrkonometrie, Springer, Berlin.Google Scholar
  11. Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986): Learning Internal Representation by Error Propagation. In: D.E. Rumelhart and J.L. Mlelland (eds.):Parallel Distributed Processing, MIT Press, Cambridge, 318–362.Google Scholar
  12. Wartenberg, F., Gaul, W., and Decker, R. (1994): Alternativ Modell: Neuronale Netze in der Kaufverhaltensforschung, Absatzwirtschaft, 7, 66–69.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • F. Wartenberg
    • 1
  • R. Decker
    • 1
  1. 1.Institut für Entscheidungstheorie und UnternehmensforschungUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations