Classification and Representation Using Conjoint Data

  • D. Baier
  • W. Gaul
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


We present new approaches to the analysis of conjoint data. One part of this paper deals with classification, another with representation issues. Both parts start with an overview of available approaches and then introduce new approaches. A real-world application concerning the introduction of a new product in the European air freight market shows advantages of the presented approaches.


Ideal Point Conjoint Analysis Multiple Correspondence Analysis Disaggregate Level Transport Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BAIER, D. (1994): Konzipierung und Realisierung einer Unterstützung des kombinierten Einsatzes von Methoden bei der Positionierungsanalyse. Lang, Frankfurt.Google Scholar
  2. BOCK, H.H. (1969): The Equivalence of Two Extremal Problems and its Application to the Iterative Classification of Multivariate Data. In Report on the Conference“Medizinische Statistik”, Forschungsinstitut Oberwolfach.Google Scholar
  3. CARROLL, J.D., GREEN, P.E., and KIM, J. (1989): Preference Mapping of Conjoint-Based Profiles: An INDSCAL Approach. Journal of the Academy of Marketing Science, 17, 273–281.CrossRefGoogle Scholar
  4. DESARBO, W.S., and CRON, W.L. (1988): A Maximum Likelihood Methodology for Clusterwise Regression.Journal of Classification, 5, 249–282.CrossRefGoogle Scholar
  5. DESARBO, W.S., OLIVER, R., and RANGASWAMY, A. (1989): A Simulated Annealing Methodology for Clusterwise Linear Regression. Psychometrika, 54, 707–736.CrossRefGoogle Scholar
  6. DESARBO, W.S., and RAO, V.R. (1986): A Constrained Unfolding Methodology for Product Positioning. Marketing Science, 5, 1–19.CrossRefGoogle Scholar
  7. GREEN, P.E., and KRIEGER, A.M. (1991): Segmenting Markets With Conjoint Analysis. Journal of Marketing, 55, 20–31.CrossRefGoogle Scholar
  8. GREEN, P.E., KRIEGER, A.M., and CARROLL, J.D. (1987): Conjoint Analysis and Multidimensional Scaling: A Complementary Approach. Journal of Advertising Research, 21–26.Google Scholar
  9. GREEN, P.E., and RAO, V.R. (1971): Conjoint Measurement for Quantifying Judgemental Data. Journal of Marketing Research, 8, 355–363.CrossRefGoogle Scholar
  10. GREEN, P.E., and SRINIVASAN, V. (1978): Conjoint Analysis in Consumer Research: Issues and Outlook. Journal of Consumer Research, 5, 103–123.CrossRefGoogle Scholar
  11. GREEN, P.E., and SRINIVASAN, V. (1990): Conjoint Analysis in Marketing: New Developments With Implications for Research and Practice. Journal of Marketing, 54, October, 3–19.CrossRefGoogle Scholar
  12. HAGERTY, M.R. (1985): Improving the Predictive Power of Conjoint Analysis: The Use of Factor Analysis and Cluster Analysis.Journal of Marketing Research, 22, 168–184.CrossRefGoogle Scholar
  13. KAMAKURA, W.A. (1988): A Least Squares Procedure for Benefit Segmentation with Conjoint Experiments. Journal of Marketing Research, 25, 157–167.CrossRefGoogle Scholar
  14. MENGEN, A. (1993): Konzeptgestaltung von Dienstleistungsprodukten. Schäf- fer-Poeschel, Stuttgart.Google Scholar
  15. MOORE, W.L. (1980): Levels of Aggregation in Conjoint Analysis: An Experimental Comparison. Journal of Marketing Research, 17, 516–523.CrossRefGoogle Scholar
  16. SPÄTH, H. (1983): Cluster-Formation und -Analyse. Oldenbourg, München.Google Scholar
  17. WEDEL, M., and KISTEMAKER, C. (1989): Consumer Benefit Segmentation Using Clusterwise Linear Regression. International Journal of Research in Marketing, 6, 45–49.CrossRefGoogle Scholar
  18. WITTINK, D.R., and CATTIN, P. (1989): Commercial Use of Conjoint Analysis: An Update. Journal of Marketing, 53, Summer, 91–96.CrossRefGoogle Scholar
  19. WITTINK, D.R., VRIENS, M., and BURHENNE, W. (1994): Commercial Use of Conjoint Analysis in Europe: Results and Critical Reflections. International Journal of Research in Marketing, 11, 41–52.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • D. Baier
    • 1
  • W. Gaul
    • 1
  1. 1.Institut für Entscheidungstheorie und UnternehmensforschungUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations