Advertisement

Representation of Statistical Structures, Classification and Prediction Using Multidimensional Scaling

  • C. M. Cuadras
  • J. Fortiana
  • F. Oliva
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

We show that MDS and related methods provide techniques and solutions to a wide field of topics in statistics, classification and data analysis: distance—based regression; representation of Hoeffding’s extremal correlations; examining a tree; representing parametric estimable functions in MANOVA; distance—based discrimination and classification; representation of a continuous random variable.

Keywords

Multidimensional Scaling Maximum Correlation Canonical Variate Analysis Ultrametric Tree Classic Linear Discriminant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AHRENS, H. AND J. LÅNTNER (1974). Mehrdimensionale Varianzanaiyse. Akademic-Verlag, Berlin.Google Scholar
  2. BERTIER, P. AND J. M. BOUROCHE (1975). Analyse des Données Multidimensionnelles. Presses Univ. de France, Paris.Google Scholar
  3. BOCK, H. H. (1987). On the interface between Cluster Analysis, Principal Component Analysis, and Multidimensional Scaling. In H. Bozgodan and A. K. Gupta (eds.), Multivariate Statistical Modeling and Data Analysis, pp. 17–33.D. Reidel Pub. Co.CrossRefGoogle Scholar
  4. CIAMPI, A., L. HENDRICKS, AND Z. LOU (1993). Discriminant analysis for mixed variables: Integrating trees and regression models. See Cuadras and Rao (1993), pp. 3–22.Google Scholar
  5. COLL, M. D., C. M. CUADRAS J. EGOZCUE (1980). Distribution of human chromosomes on the methaphase plate. Symmetrical arrangement in human male cells. Genetical Research 36, 219–234.CrossRefGoogle Scholar
  6. CRITCHLEY, F. (1988). The Euclidean structure of a dendrogram, the variance of a node and the question: “how many clusters really are there?”. In H. H. Bock (ed.), Classification and Related Methods of Data Analysis, pp. 75–84. Elsevier Science Publishers B. V. (North-Holland).Google Scholar
  7. CRITCHLEY, F. W. HEISER (1988). Hierarchical trees can be perfectly scaled in one dimension.Journal of Classification 5, 5–20CrossRefGoogle Scholar
  8. CUADRAS, C. M. (1974). Análisis discriminante de funciones paramétricas estimables. Trabajos de Estadística e Investigación Operativa 25(3), 3–31.CrossRefGoogle Scholar
  9. CUADRAS, C. M. (1981a). Análisis y representación multidimensional de la variabilidad. In Inter. Symp. Concpt. Meth. Paleo. Barcelona, pp. 287–297.Google Scholar
  10. CUADRAS, C. M. (1981b). Métodos de Análisis Multivariante. EUNIBAR, Barcelona. 2a edición, PPU, Barcelona (1991).Google Scholar
  11. CUADRAS, C. M. (1989). Distance analysis in discrimination and classification using both continuous and categorical variables. In Y. Dodge (ed.), Statistical Data Analysis and Inference, pp. 459–473. North-Holland Publishing Co., Amsterdam.Google Scholar
  12. CUADRAS, C. M. (1991). A distance based approach to discriminant analysis and its properties. Math. Preprint Series 90, Univ. de Barcelona.Google Scholar
  13. CUADRAS, C. M. (1992a). Probability distributions with given multivariate marginals and given dependence structure. Journal of Multivariate Analysis 42, 51–66.CrossRefGoogle Scholar
  14. CUADRAS, C. M. (1992b). Some examples of distance based discrimination. Biometrical Letters 29, 3–20.Google Scholar
  15. CUADRAS, C. M. (1994). A distribution with given marginals and given regression curve. In H. Sherwood and M. D. Taylor (eds.), Distributions with fixed marginals, Doubly Stochastic Measures and Markov Operators. Proceedings Univ. of Washington at Seattle, Aug. 1993. IMS Monograph Series, (to appear).Google Scholar
  16. CUADRAS, C. M. and C. ARENAS (1990). A distance based regression model for prediction with mixed data. Communications in Statistics A. Theory and Methods 19, 2261–2279.CrossRefGoogle Scholar
  17. CUADRAS, C. M. and J. FORTIANA (1993). Continuous metric scaling and prediction. See Cuadras and Rao (1993), pp. 47–66.Google Scholar
  18. CUADRAS, C. M. and J. FORTIANA (1994a). Ascertaining the underlying distribution of a data set. In R. Gutierrez and M. J. Valderrama (eds.), Selected topics on Stochastic Modelling. World Scientific, Singapore, (in press).Google Scholar
  19. CUADRAS, C. M. and J. FORTIANA (1994b). A continuous metric scaling solution for a random variable. Journal of Multivariate Analysis 50. (to appear).Google Scholar
  20. CUADRAS, C. M. and J. M. OLLER (1987). Eigenanaiysis and metric multidimensional scaling on hierarchical structures. qüestiió 11, 37–57.Google Scholar
  21. CUADRAS, C. M. AND C. R. RAO (eds.) (1993). Multivariate Analysis, Future Directions 2. Elsevier, Amsterdam.Google Scholar
  22. DAVISON, M. L. (1983). Multidimensional Scaling. John Wiley k Sons, New York.Google Scholar
  23. GREENACRE, M. J. (1984). Theory and Applications of Correspondence Analysis. Academic Press, London.Google Scholar
  24. HOEFFDING, W. (1940). Masstabinvariante Korrelationtheorie. Schriften des Math. Inst Angew. Math. Univ. Berlin 5, 181–233.Google Scholar
  25. HOLMAN, E. W. (1972). The relation between hierarchical and Euclidean models for psychological distances. Psychometrika 37, 417–423.CrossRefGoogle Scholar
  26. KRUSKAL, J. B. (1977). The relationship between multidimensional scaling and clustering. In J. Van Ryzin (ed.), Classification and Clustering, pp. 17–44. Academic Press, New York.Google Scholar
  27. KRUSKAL, J. B. and M. WISH (1978). Multidimensional Scaling. Number Hin Sage University Paper series on Quantitative Applications in the Social Sciences. Beverly Hills and London: Sage Publications.Google Scholar
  28. KRZANOWSKI, W. J. (1988). Principles of Multivariate Analysis: a User’s Perspective. Clarendon Press, Oxford.Google Scholar
  29. KRZANOWSKI, W. J. (1993). The location model for mixtures of categorical and continuous variables. Journal of Classification 10, 25–49.CrossRefGoogle Scholar
  30. MARDIA, K. V., J. T. KENT, and J. M. BIBBY (1979). Multivariate Analysis. Academic Press, London.Google Scholar
  31. OLIVA, F., C. BOLANCE, and L. DIAZ (1993). Aplicació de l’anàlisi multivariant a un estudi sobre les llengües europees. Qüestiió 17, 139–161.Google Scholar
  32. PETITPIERRE, E. and C. M. CUADRAS (1977). The canonical analysis applied to the taxonomy and evolution of the genus Timarcha Latr. (Coleoptera, Chrysomelidae). Mediterranea 1, 13–28.Google Scholar
  33. PRUZANSKY, S., A. TVERSKY, and J. D. CARROLL (1982). Spatial versus tree representations of proximity data. Psychometrika 47, 3–24.CrossRefGoogle Scholar
  34. RAO, C. R. (1973). Linear Statistical Inference and its Applications, 2nd Ed. John Wiley & Sons, New York.CrossRefGoogle Scholar
  35. ROMNEY, A. K., R. N. SHEPARD, AND S. NERLOVE (eds.) (1972). Multidimensional Scaling: Theory and Applications in the Behavioral Sciences. Vol. 2, Applications. Seminar Press, New York.Google Scholar
  36. ROSES, F. (1990). Estudi de la “i” àtona en posició post-consonàntica. Univ. de Barcelona. Unpublished manuscript.Google Scholar
  37. SEBER, G. A. F. (1984). Multivariate Observations. John Wiley & Sons, New York.CrossRefGoogle Scholar
  38. SHEPARD, R. N., A. K. ROMNEY, AND S. NERLOVE (eds.) (1972). Multidimensional Scaling: Theory and Applications in the Behavioral Sciences. Vol. I. Theory. Seminar Press, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • C. M. Cuadras
    • 1
  • J. Fortiana
    • 1
  • F. Oliva
    • 1
  1. 1.Departament d’EstadisticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations