Advertisement

Least Squares Multidimensional Scaling with Transformed Distances

  • Patrick J. F. Groenen
  • Jan de Leeuw
  • Rudolf Mathar
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

We consider a general least squares loss function for multidimensional scaling. Special cases of this loss function are STRESS, S-STRESS, and MULTISCALE. Several analytic results are presented. In particular, we present the gradient and Hessian, and look at the differentiability at a local minimum. We also consider fulldimensional scaling and indicate when a global minimum can be obtained. Furthermore, we treat the problem of inverse multidimensional scaling, where the aim is to find those dissimilarity matrices for which a fixed configuration is a stationary point.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BAILEY, R., and GOWER, J. C. (1990): Approximating a symmetric matrix. Psychometrika, 55, 665–675.CrossRefGoogle Scholar
  2. BROWNE, M. W. (1987): The Young-Householder algorithm and the least squares multidimensional scaling of squared distances. Journal of Classification, 4, 175–190.CrossRefGoogle Scholar
  3. CRITCHLEY, F. (1986): Dimensionality theorems in multidimensional scaling and hierarchical cluster analysis. In: E. Diday, Y. Escoufier, L. Lebart, J. Lepage, Y. Schektman, and R. Tomassone (eds.), Informatics, IV, North-Holland, Amsterdam, 45–70.Google Scholar
  4. DE LEEUW, J. (1984): Differentiability of Kruskai’s Stress at a local minimum. Psychometrika, 49, 111–113.CrossRefGoogle Scholar
  5. DE LEEUW, J., and GROENEN, P.J.F. (1993): Inverse scaling. Tech. rep. 144, UCLA Statistics Series, Interdivisonal Program in Statistics, UCLA, Los Angeles, California.Google Scholar
  6. DE LEEUW, J., and HEISER, W. J. (1980): Multidimensional scaling with restrictions on the configuration. In: Krishnaiah, P. (ed.), Multivariate Analysis, volume V. North Holland, Amsterdam, 501–522.Google Scholar
  7. GAFFKE, N., and MATHAR, R. (1989): A cyclic projection algorithm via duality. Metrika, 36, 29–54.CrossRefGoogle Scholar
  8. GLUNT, W., HAYDEN, T., and LIU, W.-M. (1991): The embedding problem for predistance matrices. Bulletin of Mathematical Biology, 53, 769–796.Google Scholar
  9. GROENEN, P. J.F., MATHAR, R., and HEISER, W. J. (1992): The majorization approach to multidimensional scaling for Minkowski distances. Tech. rep. RR- 92–11, Department of Data Theory, Leiden.Google Scholar
  10. KRUSKAL, J. B. (1964): Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.CrossRefGoogle Scholar
  11. KRUSKAL, J. B., YOUNG, F. W., and SEERY, J. (1977): How to use kyst-2, a very flexible program to do multidimensional scaling. Tech. rep. AT&T Bell Laboratories, Murray Hill, New Jersey.Google Scholar
  12. RAMSAY, J. 0. (1977): Maximum likelihood estimation in MDS. Psychometrika, 42, 241–266.CrossRefGoogle Scholar
  13. STOOP, I., HEISER, W.J., and DE LEEUW, J. (1981): How to use smacof-I A. Tech. rep. Department of Data Theory, Leiden.Google Scholar
  14. TAKANE, Y., YOUNG, F. W., and DE LEEUW, J. (1977): Nonmetric individual differences in multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42, 7–67.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • Patrick J. F. Groenen
    • 1
  • Jan de Leeuw
    • 2
  • Rudolf Mathar
    • 3
  1. 1.Department of Data TheoryUniversity of LeidenLeidenThe Netherlands
  2. 2.Interdivisional Program in statisticsUCLAUSA
  3. 3.Institute of StatisticsAachen University of TechnologyAachenGermany

Personalised recommendations