Advertisement

Recent Developments in Multimode Clustering

  • Thomas Eckes
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

In recent years several models and corresponding algorithms for clustering two- or higher-mode data have been developed, including the additive-clustering approach (e.g., DeSarbo, 1982), the tree-fitting approach (e.g., De Soete & Carroll, 1989), and the error-variance approach (e.g., Eckes & Orlik, 1993). The present paper relates various types of data frequently collected in the behavioral and social sciences to prominent models of multimode clustering and demonstrates the versatility of three-mode clustering using a real data set drawn from social-psychological research.

Keywords

Hierarchical Classis Proximity Data Disjoint Cluster Ultrametric Tree Less Square Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ARABIE, P., CARROLL, J.D., and DESARBO, W.S. (1987): Three-Way Scaling and Clustering.Sage, Newbury Park.Google Scholar
  2. ARABIE, P., and HUBERT, L.J. (1990): The Bond Energy Algorithm Revisited. IEEE Transactions on Systems, Man, and Cybernetics, 20, 268–274 CrossRefGoogle Scholar
  3. ARABIE, P., and HUBERT, L.J. (1992): Combinatorial Data Analysis. Annual Review of Psychology, 43, 169–203 CrossRefGoogle Scholar
  4. ARABIE, P., and HUBERT, L.J. (1994): An Overview of Combinatorial Data Analysis. In: P. Arabie, L. Hubert and G. De Soete (eds.): Clustering and Classification.World Scientific, River Edge.Google Scholar
  5. ARABIE, P., HUBERT, L.J., and SCHLEUTERMANN, S. (1990): Blockmodels from the Bond Energy Approach. Social Networks, 12, 99–126. CrossRefGoogle Scholar
  6. ARABIE, P., SCHLEUTERMANN, S., DAWS, J., and HUBERT, L. (1988): Marketing Applications of Sequencing and Partitioning of Nonsymmetric and/or Two- Mode Matrices. In: W. Gaul and M. Schader (eds.): Data,Expert Knowledge and Decisions.Springer-Verlag, Berlin, 215–224.Google Scholar
  7. CARROLL, J.D., and ARABIE, P. (1980): Multidimensional Scaling. Annual Review of Psychology, 31, 607–649. CrossRefGoogle Scholar
  8. CARROLL, J.D., and ARABIE, P. (1983): INDCLUS: An Individual Differences Generalization of the ADCLUS Model and the MAPCLUS Algorithm. Psychometrika, 48, 157–169. CrossRefGoogle Scholar
  9. CARROLL, J.D., CLARK, L.A., and DESARBO, W.S. (1984): The Representation of Three-Way Proximity Data By Single and Multiple Tree Structure Models. Journal of Classification, 1, 25–74. CrossRefGoogle Scholar
  10. CARROLL, J.D., and DE SOETE, G. (1994): Spatial, Non-spatial and Hybrid Models for Scaling. In: P. Arabie, L. Hubert and G. De Soete (eds.): Clustering and Classification.World Scientific, River Edge.Google Scholar
  11. CATTELL, R.B. (1966): The Data Box: Its Ordering of Total Resources in Terms of Possible Relational Systems. In: R.B. Cattell (ed.): Handbook of Multivariate Experimental Psychology.Rand McNally, Chicago, 67–128.Google Scholar
  12. DE BOECK, P., and ROSENBERG, S. (1988): Hierarchical Classes: Model and Data Analysis. Psychometrika, 53, 361–381. CrossRefGoogle Scholar
  13. DESARBO, W.S. (1982): GENNCLUS: New Models for General Nonhierarchical Clustering Analysis. Psychometrika, 47, 449–475.CrossRefGoogle Scholar
  14. DESARBO, W.S., and DE SOETE, G. (1984): On the Use of Hierarchical Clustering for the Analysis of Nonsymmetric Proximities. Journal of Consumer Research, 11, 601–610. CrossRefGoogle Scholar
  15. DE SOETE, G. (1988): Tree Representations of Proximity Data by Least Squares Methods. In: H.H. Bock (ed.): Classification and Related Methods of Data Analysis.North-Holland, Amsterdam, 147–156.Google Scholar
  16. DE SOETE, G., and CARROLL, J.D. (1989): Ultrametric Tree Representations of Three-Way Three-Mode Data. In: R. Coppi and S. Bolasco (eds.): Multiway Data Analysis.North-Holland, New York, 415–426.Google Scholar
  17. DE SOETE, G., DESARBO, W.S., FURNAS, G.W., and CARROLL, J.D. (1984): The Estimation of Ultrametric and Path Length Trees From Rectangular Proximity Data. Psychometrika, 49, 289–310. CrossRefGoogle Scholar
  18. ECKES, T. (1993): A Two-Mode Clustering Study of Situations and Their Features. In: O. Opitz, B. Lausen and R. Klar (eds.): Information and ClassificationSpringer-Verlag, Berlin, 510–517.Google Scholar
  19. ECKES, T. (1994): Features of Men, Features of Women: Assessing Stereotypic Beliefs about Gender Subtypes.British Journal of Social Psychology, 33, 107- 123. CrossRefGoogle Scholar
  20. ECKES, T. (in press): Features of Situations: A Two-Mode Clustering Study of Situation Prototypes. Personality and Social Psychology Bulletin. Google Scholar
  21. ECKES, T., and HASSEBRAUCK, M. (1993): Multimodale Analysen in der physischen Attraktivitäts-Forschung. In: M. Hassebrauck and R. Niketta (eds.): Physische Attraktivität.Hogrefe, Göttingen, 95–121.Google Scholar
  22. ECKES, T., and ORLIK, P. (1993): An Error Variance Approach to Two-Mode Hierarchical Clustering. Journal of Classification, 10, 51–74 CrossRefGoogle Scholar
  23. ECKES, T., and ORLIK, P. (1994): Three-Mode Hierarchical Cluster Analysis of Three-Way Three-Mode Data. In: H.H. Bock, W. Lenski and M.M. Richter (eds.): Information Systems and Data Analysis.Springer-Verlag, Berlin, 219- 227.Google Scholar
  24. ESPEJO, E., and GAUL, W. (1986): Two-Mode Hierarchical Clustering as an Instrumemt for Marketing Research. In: W. Gaul and M. Schader (eds.): Classification as a Tool of Research.North-Holland, Amsterdam, 121–128.Google Scholar
  25. JOHN, O.P. (1990): The “Big Five” Factor Taxonomy: Dimensions of Personality in the Natural Language and in Questionnaires. In: L.A. Pervin (ed.): Handbook of Personality: Theory and Research.Guilford Press, New York, 66–100.Google Scholar
  26. McCORMICK, W.T., SCHWEITZER, P.J., and WHITE, T.W. (1972): Problem Decomposition and Data Reorganization by a Clustering Technique. Operations Research, 20, 993–1009. CrossRefGoogle Scholar
  27. MIRKIN, B., ARABIE, P., and HUBERT, L.J. (1994): Additive Two-Mode Clustering: The Error-Variance Approach Revisited. Paper submitted.Google Scholar
  28. SCHLEUTERMANN, S., ARABIE, P., HUBERT, L.J., and BRONSARD, F. (1990): Some Algorithms for “Bond Energy” Data Analysis, Including Simulated Annealing. In: M. Schader and W. Gaul (eds.): Knowledge, Data and Computer- Assisted Decisions.Springer-Verlag, Berlin, 139–152.Google Scholar
  29. SHEPARD, R.N., and ARABIE, P. (1979): Additive Clustering: Representation g of Similarities as Combinations of Discrete Overlapping Properties. Psychological Review, 86, 87–123.CrossRefGoogle Scholar
  30. WARD, J.H. (1963): Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236–244 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • Thomas Eckes
    • 1
  1. 1.Fachbereich GesellschaftswissenschaftenBergische Universität WuppertalWuppertalGermany

Personalised recommendations