Valuations and Hierarchizations

  • Klaus Biedermann
  • Rudolf Wille
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


In data analysis, the interplay of valuations, mapping objects into an ordered set of values, and hierarchizations, assigning to the values suitable subsets of the object set, is of central interest. Their relationship can be appropriately described and analyzed by methods for formal concept analysis. The essential step is to form suitable formal contexts with valuations as formal objects and hierarchizations as attributes. The corresponding concept lattices which contain all structural information of the interplay between valuations and hierarchizations can be completely determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BIEDERMANN, K. (1994): Bewertungen und Hierarchisierungen. Staatsexamenarbeit, FB Mathematik, TH Darmstadt.Google Scholar
  2. CRITCHLEY, F. and VAN CUTSEM, B. (1992): An order-theoretic unification of certain fundamental bijections in mathematical classification I,II. Research Reports, Dept. Stat. Univ. Warwick. To appear in: B. Van Cutsem (ed.): Classification and Dissimilarity Analysis. Lecture Notes in Statistics. Springer-Verlag, New York.Google Scholar
  3. DAVEY, B. A. and PRIESTLEY, H. A. (1990): Introduction to lattices and order. Cambridge University Press, Cambridge.Google Scholar
  4. GANTER, B. (1988): Composition and decomposition in formal concept analysis. In: H. H. Bock (ed.): Classification and related methods of data analysis. North– Holland, Amsterdam, 561–566.Google Scholar
  5. GANTER, B. and WILLE, R. (1989): Conceptual scaling. In: F. Roberts (ed.): Applications of combinatorics and graph theory to the biological and social sciences. Springer-Verlag, New York, 139–167.Google Scholar
  6. GANTER, B. and WILLE, R.: Formale Begriffsanaiyse. B. I. -Wissenschaftsver- lag, Mannheim (in preparation).Google Scholar
  7. JANOWITZ, M. F. (1978): An order theoretic model for cluster analysis. SIAM J. Appl. Math. 34,55–72.Google Scholar
  8. STRAHRINGER, S., WILLE, R. (1992): Towards a structure theory for ordinal data. In: M. Schader (ed.): Analyzing and modeling data and knowledge. Springer-Verlag, Berlin-Heidelberg, 129–139.Google Scholar
  9. WILLE, R. (1984): Liniendiagramme hierarchischer Begriffssysteme. In: H. H. Bock (Hrsg.): Anwendungen der Klassifikation: Datenanalyse und numerische Klassifikation. Indeks-Verlag, Frankfurt, 32–51.Google Scholar
  10. WILLE, R. (1985): Finite distributive lattices as concept lattices. Atti Inc. Logica Mathematica (Siena) 2, 635–648.Google Scholar
  11. WILLE, R. (1992): Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications, 23, 493–515.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • Klaus Biedermann
    • 1
  • Rudolf Wille
    • 1
  1. 1.Forschungsgruppe Begriffsanalyse, Fachbereich MathematikTechnischen Hochschule DarmstadtDarmstadtGermany

Personalised recommendations