Advances in Cluster Analysis Relevant to Marketing Research

  • P. Arabie
  • L. Hubert
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


We review the current methodological and practical state of cluster analysis in marketing. Topics covered include segmentation, market structure analysis, a taxonomy based on overlap, connections to conjoint analysis, and validation.


Market Research Consumer Research Conjoint Analysis Marketing Research Market Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARABIE, P., CARROLL, J. D. (1980): MAPCLUS: A mathematical programming approach to fitting the ADCLUS model. Psychometrika, 45, 211–235.CrossRefGoogle Scholar
  2. ARABIE, P., CARROLL, J. D., DESARBO, W., WIND, J. (1981): Overlapping clustering: A new method for product positioning. Journal of Marketing Research, 18, 310–317.CrossRefGoogle Scholar
  3. ARABIE, P., HUBERT, L. (1992): Combinatorial data analysis. Annual Review of Psychology, 43, 169–203.CrossRefGoogle Scholar
  4. ARABIE, P., HUBERT, L. (1994): Cluster analysis in marketing research. In R. P. Bagozzi (ed.): Advanced methods in marketing research, Oxford: Black-well, 160–189.Google Scholar
  5. ARABIE, P., SOLI, S. D. (1982): The interface between the types of regression and methods of collecting proximity data. In R. G. Golledge and J. N. Rayner (eds.): Proximity and preference: Problems in the multidimensional analysis of large data sets. University of Minnesota Press., Minneapolis MN, 90–115.Google Scholar
  6. ARABIE, P., WIND, J. (1994): Marketing and social networks. In J. Galask-iewicz and S. S. Wasserman (eds.): Advances in social and behavioral sciences from social network analysis. Sage, Newbury Park, CA.Google Scholar
  7. BAKER, F. B., HUBERT, L. J. (1976): A graph-theoretic approach to goodness-of-fit in complete-link hierarchical clustering. Journal of the American Statistical Association, 71, 870–878.CrossRefGoogle Scholar
  8. BATAGELJ, V. (1988): Generalized Ward and related clustering problems. In H. H. Bock (ed.): Classification and related methods of data analysis. North-Holland, Amsterdam, 67–74.Google Scholar
  9. BEANE, T. P., ENNIS, D. M. (1987): Market segmentation: A review. European Journal of Marketing, 21, 20–42.CrossRefGoogle Scholar
  10. BLOZAN, W., PRABHAKER, P. (1984): Notes on aggregation criteria in market segmentation. Journal of Marketing Research, 21, 332–335.CrossRefGoogle Scholar
  11. BRETTON-CLARK, INC. (1993): ProClus. Bretton-Clark, Morristown, NJ.Google Scholar
  12. BUTLER, D. H. (1976): Development of statistical marketing models. In Speaking of Hendry. Hendry Corporation, Croton-on-Hudson, NY.Google Scholar
  13. CARROLL, J. D., CLARK, L. A., DESARBO, W. S. (1984): The representation of three-way proximities data by single and multiple tree structure models. Journal of Classification, 1, 25–74.CrossRefGoogle Scholar
  14. CHANG, W.-C. (1983): On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32, 267–275.CrossRefGoogle Scholar
  15. CHOFFRAY, J.-M., LILIEN, G. L. (1978): A new approach to industrial market segmentation. Sloan Management Review, Spring, 17–29.Google Scholar
  16. CHOFFRAY, J.-M., LILIEN, G. L. (1980a): Market planning for new industrial products. Wiley, New York.Google Scholar
  17. CHOFFRAY, J.-M., LILIEN, G. L. (1980b): Industrial market segmentation by the structure of the purchasing process. Industrial Marketing Management, 9, 331–342.CrossRefGoogle Scholar
  18. COOPER, M. C., and MILLIGAN, G. W. (1988): The effect of measurement error on determining the number of clusters in cluster analysis. In W. Gaul and M. Schader (Eds.): Data, expert knowledge and decisions. Springer-Verlag, Berlin 319–328.Google Scholar
  19. CURRIM, I. S. (1981): Using segmentation approaches for better prediction and understanding from consumer mode choice models.Journal of Marketing Research, 18, 301–309.CrossRefGoogle Scholar
  20. CURRIM, I. S., SCHNEIDER, L. G. (1991): A taxonomy of consumer purchase strategies in a promotion intensive environment. Marketing Science, 10, 91–110.CrossRefGoogle Scholar
  21. DAY, G. S., HEELER, R. M. (1971): Using cluster analysis to improve marketing experiments. Journal of Marketing Research, 8, 340–347.CrossRefGoogle Scholar
  22. DAY, W. H. E. (ed.) (1991): Classification Literature Automated Search Service, 20.Google Scholar
  23. DE KLUYVER, C. A., WHITLARK, D. B. (1986): Benefit segmentation for industrial products. Industrial Marketing Management, 15, 273–286.CrossRefGoogle Scholar
  24. DE SOETE, G. (1986): Optimal variable weighting for ultrametric and additive tree clustering. Quality and Quantity, 20, 169–180.CrossRefGoogle Scholar
  25. DE SOETE, G. (1988): OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting. Journal of Classification, 5, 101–104.CrossRefGoogle Scholar
  26. DE SOETE, G. (1994): Variable selection and weighting in cluster analysis. In P. Arabie, L. Hubert and G. De Soete (eds.): Clustering and classification. World Scientific, River Edge, New Jersey.Google Scholar
  27. DE SOETE, G., CARROLL, J. D. (1988): Optimal weighting for one-mode and two-mode ultrametric tree representations of three-way three-mode data. In M. G. H. Jansen and W. H. van Schuur (eds.): The many faces of multivariate data analysis. RION, Groningen, 16–29.Google Scholar
  28. DE SOETE, G., CARROLL, J. D. (1989): Ultrametric tree representations of three-way three-mode data. In R. Coppi and S. Bolasco (eds.): Analysis of multiway data matrices. North-Holland, Amsterdam, 415–426.Google Scholar
  29. DE SOETE, G., CARROLL, J. D. (1994): K-means clustering in a low-dimensional Euclidean space. In E. Diday, Y. Lechevailier, M. Schader, P. Bertrand, P. Burtschy(eds.): New approaches in classification and data analysis, Springer-Verlag, Heidelberg.Google Scholar
  30. DE SOETE, G., CARROLL, J. D., DESARBO, W. S. (1987): Least squares algorithms for constructing constrained ultrametric and additive tree representations of symmetric proximity data. Journal of Classification, 4, 155–173.CrossRefGoogle Scholar
  31. DE SOETE, G., DESARBO, W. S., CARROLL, J. D. (1985): Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm, Journal of Classification, 2, 173–192.CrossRefGoogle Scholar
  32. DEMING, W. E., STEPHAN, F. F. (1940): On a least squares adjustment of a sampled frequency table when the expected marginal totals are known.Annals of Mathematical Statistics, 11, 427–444.CrossRefGoogle Scholar
  33. DESARBO, W. S. (1982): GENNCLUS: New models for general nonhierarchical clustering analysis. Psychometrika, 47, 446–449.Google Scholar
  34. DESARBO, W. S., CARROLL, J. D., CLARK, L. A., GREEN, P. E. (1984): Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika, 49, 57–78.CrossRefGoogle Scholar
  35. DESARBO, W. S., CRON, W. L. (1988): A conditional mixture maximum likelihood methodology for clusterwise linear regression. Journal of Classification, 5, 249–289.CrossRefGoogle Scholar
  36. DESARBO, W. S., DE SOETE, G. (1984): On the use of hierarchical clustering for the analysis of nonsymmetric proximities. Journal of Consumer Research, 11, 601–610.CrossRefGoogle Scholar
  37. DESARBO, W. S., JEDIDI, K., COOL, K., SCHENDEL, D. (1990): Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups.Marketing Letters, 2, 129–146.CrossRefGoogle Scholar
  38. DESARBO, W. S., MAHAJAN, V. (1984): Constrained classification: The use of a priori information in cluster analysis. Psychometrika, 49, 187–216.CrossRefGoogle Scholar
  39. DESARBO, W. S., MANRAI, A., BURKE, R. (1990): A nonspatial methodology incorporating the distance-density hypothesis. Psychometrika, 55, 229–253.CrossRefGoogle Scholar
  40. DESARBO, W. S., MANRAI, A. K., MANRAI, L. A. (1993): Non-spatial tree models for the assessment of competitive market structure: an integrated review of the marketing and psychometric literature. In J. Eliashberg and G. Lilien (eds.): Handbook in operations research and management science: Marketing. Elsevier, New York, 193–257.Google Scholar
  41. DESARBO, W. S., OLIVER, R. L., RANGASWAMY, A. (1989): A simulated annealing methodology for clusterwise linear regression. Psychometrika, 4, 707–736.CrossRefGoogle Scholar
  42. DICKINSON, J. R. (1990): The bibliography of marketing research methods (3rd ed.). Lexington, Lexington, MA.Google Scholar
  43. DILLON, W. R., MULANI, N., FREDERICK, D. G. (1989): On the use of component scores in the presence of group structure. Journal of Consumer Research, 16, 106–112.CrossRefGoogle Scholar
  44. DOYLE, P., SAUNDERS, J. (1985): Market segmentation and positioning in specialized industrial markets. Journal of Marketing, 49, 24–32.CrossRefGoogle Scholar
  45. DUBES, R., JAIN, A. K. (1979): Validity studies in clustering methodologies. Pattern Recognition, 11, 235–254.CrossRefGoogle Scholar
  46. ELROD, T., WINER, R. S. (1982): An empirical evaluation of aggregation approaches for developing market segments. Journal of Marketing, 46 (Fall), 65–74.CrossRefGoogle Scholar
  47. FIENBERG, S. E. (1970): An iterative procedure for estimation in contingency tables. Annals of Mathematical Statistics, 41, 907–17. (Erratum, p. 1778).Google Scholar
  48. FINDEN, C. R., GORDON, A. D. (1985): Obtaining common pruned trees. Journal of Classification, 2, 255–276.CrossRefGoogle Scholar
  49. FOWLKES, E. B., GNANADESIKAN, R., KETTENRING, J. R. (1987):Variable selection in clustering and other contexts. In C. L. Mallows (ed.): Design, data, and analysis. Wiley, New York, 13–34.Google Scholar
  50. FOWLKES, E. B., GNANADESIKAN, R., KETTENRING, J. R. (1988): Variable selection in clustering. Journal of Classification, 5, 205–228.CrossRefGoogle Scholar
  51. FURSE, D. H., PUNJ, G. N., STEWART, D. W. (1984): A typology of individual search strategies among purchasers of new automobiles. Journal of Consumer Research, 10, 417–431.CrossRefGoogle Scholar
  52. GAUL, W., BAIER, D. (1993): MARKtforschung und MARKeting MANagement [Market research and marketing management]. R. Oldenbourg, München.Google Scholar
  53. GAUL, W., SCHADER, M. (1988a): Clusterwise aggregation of relations. Applied Stochastic Models and Data Analysis, 4, 273–282.CrossRefGoogle Scholar
  54. GAUL, W., SCHADER, M. (eds.). (1988b): Data, expert knowledge and decisions. Springer-Verlag, Berlin.Google Scholar
  55. GLAZER, R., NAKAMOTO, K. (1991): Cognitive geometry: An analysis of structure underlying representations of similarity. Marketing Science, 10, 205–228.CrossRefGoogle Scholar
  56. GNANADESIKAN, R., KETTENRING, J. R. (1972): Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, 28, 81–124.CrossRefGoogle Scholar
  57. GORDON, A. D. (1980): Methods of constrained classification. In R. Tomassone (ed.): Analyse de Donnes et Informatique. INRIA, Le Chesnay, 161–171.Google Scholar
  58. GORDON, A. D. (1981): Classification. Chapman and Hall, London.Google Scholar
  59. GREEN, P. E., FRANK, R. E., ROBINSON, P. J. (1967): Cluster analysis in test market selection. Management Science, 13, B387-B400.CrossRefGoogle Scholar
  60. GREEN, P. E., HELSEN, K. (1989): Cross-validation assessment of alternatives to individual-level conjoint analysis: A case study. Journal of Marketing Research, 26, 346–350.CrossRefGoogle Scholar
  61. GREEN, P. E., KRIEGER, A. M. (1985): Buyer similarity measures in conjoint analysis: Some alternative proposals. Journal of Classification, 2, 41–61.CrossRefGoogle Scholar
  62. GREEN, P. E., KRIEGER, A. M. (1991): Segmenting markets with conjoint analysis. Journal of Marketing, 55 (October), 20–31.CrossRefGoogle Scholar
  63. GREEN, P. E., KRIEGER, A. M. (1993): An evaluation of alternative approaches to cluster-based market segmentation. Unpublished manuscript, Wharton School, University of Pennsylvania, Philadelphia.Google Scholar
  64. GREEN, P. E., KRIEGER, A. M., SCHAFFER C. M. (1985): Quick and simple benefit segmentation. Journal of Advertising Research, 25, 9–17.Google Scholar
  65. GREEN, P. E., SRINIVASAN, V. (1978): Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research, 5, 103–123.CrossRefGoogle Scholar
  66. GREEN, P. E., SRINIVASAN, V. (1990): Conjoint analysis in marketing: New developments with implications for research and practice. Journal of Marketing, 54 (October), 3–19.CrossRefGoogle Scholar
  67. GROVER, R., SRINIVASAN, V. (1987): A simultaneous approach to market segmentation and market structuring. Journal of Marketing Research, 24, 139–153.CrossRefGoogle Scholar
  68. GROVER, R., SRINIVASAN, V. (1992): Evaluating the multiple effects of retail promotions on brand loyal and brand switching segments.Journal of Marketing Research, 29, 76–89.CrossRefGoogle Scholar
  69. HARTIGAN, J. A. (1975): Clustering algorithms. New York: Wiley.Translated into Japanese by H. Nishida, M. Ybshida, H. Hiramatsu, K. Tanaka, 1983. Micro Software, Tokyo.Google Scholar
  70. HELSEN, K., GREEN, P. E. (1991): A computational study of replicated clustering with an application to market segmentation. Decision Sciences, 22, 1124–1141.Google Scholar
  71. HUBERT, L. J., ARABIE, P. (1985): Comparing partitions. Journal of Classification, 2, 193–218.CrossRefGoogle Scholar
  72. HUTCHINSON, J. W., MUNGAL, A. (1992): Pairwise partitioning: A nonmetric algorithm for identifying feature-based similarity measures. Manuscript submitted for publication.Google Scholar
  73. IACOBUCCI, D., HOPKINS, N. (1992): Modeling dyadic interactions and networks in marketing. Journal of Marketing Research, 29, 5–17.CrossRefGoogle Scholar
  74. JOHNSON, M. D., FORNELL, C. (1987): The nature and methodological implications of the cognitive representation of products. Journal of Consumer Research, 14, 214–228.CrossRefGoogle Scholar
  75. KAMAKURA, W. A. (1988): A least squares procedure for benefit segmentation with conjoint experiments. Journal of Marketing Research, 25, 157–167.CrossRefGoogle Scholar
  76. KAMAKURA, W. A. (1992): A clusterwise multinomial logit model for multiple locally-independent choice sets. Unpublished manuscript, Owen Graduate School of Management, Vanderbilt University, Nashville.Google Scholar
  77. KAMAKURA, W. A., AGRAWAL, J. (1990): A clusterwise multinomial logit model for benefit segmentation. Unpublished manuscript, Owen Graduate School of Management, Vanderbilt University, Nashville.Google Scholar
  78. KAMAKURA, W. A., MAZZON, J. A. (1991): Value segmentation: A model for the measurement of values and value systems. Journal of Consumer Research, 18, 208–218.CrossRefGoogle Scholar
  79. KLASTORIN, T. D. (1985): The p-median problem for cluster analysis: A comparative test using the mixture model approach.Management Science, 31, 84–95.CrossRefGoogle Scholar
  80. LEGENDRE, P. (1987): Constrained clustering. In P. Legendre and L. Legendre (eds.): Developments in numerical ecology [NATO Advanced Study Institute Series G (Ecological Sciences)]. Springer-Verlag, Berlin, 289–307.Google Scholar
  81. LEGENDRE, L., LEGENDRE, P. (1993): Numerical ecology (2nd ed.). Elsevier, Amsterdam.Google Scholar
  82. LING, R. F. (1971): Cluster analysis. University Microfilms, Ann Arbor, MI. No. 71–22356.Google Scholar
  83. MACQUEEN, J. (1967): Some methods for classification and analysis of multivariate observations. In L. M. Le Cam and J. Neyman (eds.): Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, (Vol. 1, 281–297).Google Scholar
  84. MAHAJAN, V., JAIN, A. K. (1978): An approach to normative segmentation. Journal of Marketing Research, 15, 338–345.CrossRefGoogle Scholar
  85. MILLIGAN, G. W. (1994): Clustering validation: Results and implications for applied analyses. In P. Arabie, L. Hubert and G. De Soete (eds.): Clustering and classification. World Scientific, River Edge, New Jersey.Google Scholar
  86. MILLIGAN, G. W., COOPER, M. C. (1985): An examination of procedures for determination of clusters in a data set. Psychometrika, 50, 159–179.CrossRefGoogle Scholar
  87. MILLIGAN, G. W., COOPER, M. C. (1986): A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 441–458.CrossRefGoogle Scholar
  88. MILLIGAN, G. W., COOPER, M. C. (1988): A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181–204.CrossRefGoogle Scholar
  89. MOORE, W. L. (1980): Levels of aggregation in conjoint analysis: An empirical comparison. Journal of Marketing Research, 17, 516–523.CrossRefGoogle Scholar
  90. MURPHY, R. A., TATHAM, R. L. (1979): Optimal construction of experimental clusters.Management Science, 25, 182–190.CrossRefGoogle Scholar
  91. MURTAGH, F. (1985): A survey of algorithms for contiguity-constrained clustering and related problems. Computer Journal, 28, 82–88.CrossRefGoogle Scholar
  92. NICOSIA, F. M., WIND, Y. (1977): Behavioral models of organizational buying processes. In F. M. Nicosia and Y. Wind (eds.): Behavioral models for market analysis: Foundations for marketing action. Dryden, Hinsdale IL, 96–120.Google Scholar
  93. OGAWA, K. (1987): An approach to simultaneous estimation and segmentation in conjoint analysis. Marketing Science, 6, 66–81.CrossRefGoogle Scholar
  94. PRUZANSKY, S., TVERSKY, A., CARROLL, J. D. (1982): Spatial versus tree representations of proximity data. Psychometrika, 47, 3–24.CrossRefGoogle Scholar
  95. PUNJ, G., STEWART, D. W. (1983): Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20, 134–148.CrossRefGoogle Scholar
  96. RAO, V. R., SABAVALA, D. J. (1981): Inference of hierarchical choice processes from panel data. Journal of Consumer Research, 8, 85–96.CrossRefGoogle Scholar
  97. RAO, V. R., SABAVALA, D. J., LANGFELD, P. A. (1977): Alternative measures for partitioning analysis based on brand switching data. Unpublished manuscript, Johnson Graduate School of Cornell University, Ithaca NY.Google Scholar
  98. RAO, V. R., SABAVALA, D. J., ZAHORICK, A. J. (1982): Market structure analysis using brand switching data: A comparison of clustering techniques. In R. K. Srivastava and A. Shocker (eds.): Analytical approaches to product and marketing planning: The second conference. Marketing Science Institute, Cambridge MA, 17–25.Google Scholar
  99. ROBLES, F., SARATHY, R. (1986): Segmenting the commuter aircraft market with cluster analysis.Industrial Marketing Management, 15, 1–12.CrossRefGoogle Scholar
  100. ROHLF, F. J. (1992): NTSYS-pc numerical taxonomy and multivariate analysis system (version 1.70). Exeter Software, Setauket, NY.Google Scholar
  101. SCHADER, M. (ed.) (1992): Analyzing and modeling data and knowledge. Springer-Verlag, Berlin.Google Scholar
  102. SCHADER, M., GAUL, W. (eds.) (1990): Knowledge, data and computer-assisted decisions. Springer-Verlag, Berlin.Google Scholar
  103. SHEPARD, R. N., ARABIE, P. (1979): Additive clustering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review., 86, 87–123.CrossRefGoogle Scholar
  104. SHOCKER, A. D., STEWART, D. W., ZAHORIK, A. J. (1990): Determining the competitive structure of product-markets: Practices, issues, and suggestions. Journal of Managerial Issues, 2, (2) 127–159.Google Scholar
  105. SLATER, P. (1984): Tree representations of internal migration flows and related topics. Community and Organization Research Institute, University of California, Santa Barbara.Google Scholar
  106. SOKAL, R. R., MICHENER, C. D. (1958): A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.Google Scholar
  107. SRIVASTAVA, R. K. (1981): Usage-situational influences on perceptions of product-markets: Theoretical and empirical issues. In K. B. Monroe (ed.): Advances in Consumer Research, Vol. 8. Association for Consumer Research, Ann Arbor MI, 106–111.Google Scholar
  108. SRIVASTAVA, R. K., ALPERT, M. I. (1982): A customer-oriented approach for determining market structures. In R. K. Srivastava and A. D. Shocker (eds.) Proceedings of the Second Conference on Analytic Approaches to Product and Marketing Planning. Marketing Science Institute, Cambridge MA, 26–57.Google Scholar
  109. SRIVASTAVA, R. K., ALPERT, M. I., SHOCKER, A. D. (1984): A customer-oriented approach for determining market structures. Journal of Marketing, 48 (Spring), 32–45.CrossRefGoogle Scholar
  110. STEENKAMP, J.-B. E. M., WEDEL, M. (1991): Segmenting retail markets on store image using a consumer-based methodology. Journal of Retailing, 67, 300–320.Google Scholar
  111. STEENKAMP, J.-B. E. M., WEDEL, M. (1993): Fuzzy clusterwise regression in benefit segmentation: Application and investigation into its validity.Journal of Business Research, 26, 237–249.CrossRefGoogle Scholar
  112. STEWART, D. W. (1981): The application and misapplication of factor analysis in marketing research. Journal of Marketing Research, 18, 51–62.CrossRefGoogle Scholar
  113. WARD, J. H., JR. (1963): Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.CrossRefGoogle Scholar
  114. WEDEL, M. (1993): Market segmentation research: A review of bases and methods with special emphasis on latent class models. In Information based decision making in marketing. European Society for Opinion and Marketing Research, Paris, 191–222.Google Scholar
  115. WEDEL, M., STEENKAMP, J.-B. E. M. (1991): A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation. Journal of Marketing Research, 28, 385–396.CrossRefGoogle Scholar
  116. WILKINSON, L. (1992): SYSTAT: The system for statistics. Systat, Inc., Evanston IL.Google Scholar
  117. WIND, Y. (1978a): Introduction to special section on market segmentation research. Journal of Marketing Research, 15, 315–316.CrossRefGoogle Scholar
  118. WIND, Y. (1978b): Issues and advances in segmentation research. Journal of Marketing Research, 15, 317–337.CrossRefGoogle Scholar
  119. WIND, Y. J. (1982): Product policy: Concepts, methods, and strategy. Addison-Wesley, Reading MA.Google Scholar
  120. WIND, Y., ROBERTSON, T. S. (1982): The linking pin role in organizational buying centers. Journal of Business Research, 10, 169–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • P. Arabie
    • 1
  • L. Hubert
    • 2
  1. 1.Faculty of ManagementRutgers UniversityNewarkUSA
  2. 2.Department of PsychologyUniversity of IllinoisChampaignUSA

Personalised recommendations