Skip to main content

Dedicated Systems for Surface Electropotential Evaluation in the Detection and Diagnosis of Neoplasia

  • Conference paper

Part of the book series: ESO Monographs ((ESO MONOGRAPHS))

Abstract

The key to effective measurement and analysis of direct current (dc) skin potentials is absolute maintenance of signal integrity from the skin surface to the signal processing components of the computer’s central processor [1]. This is critical because of the inherent low amplitude of biological dc potentials. At any point in the electronic path from skin sensor to device, potential exists for noise to intrude upon signal, thereby degrading diagnostically useful information. The central themes of this chapter are the design considerations of system components necessary for keeping noise to a minimum, and methods used to extract the critical diagnostic features from the resultant dc potentials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geddes LA and Aronson S: Electrode potential stability. IEEE Transactions on Biomedical Engineering 1985 (32):987–989

    Article  PubMed  Google Scholar 

  2. Lykken DT: Properties of electrodes used in electrodermal measurement. J Comp Physiol Psych 1959 (52):629–634

    Article  CAS  Google Scholar 

  3. O’Connell DN, Tursky B, Orne MT: Electrodes for recording skin potential. Arch Gen Psychiat 1960 (3):252–258

    PubMed  Google Scholar 

  4. Goldstein AG, Sloboda W, Jennings JB: Spontaneous electrical activity of three types of silver EEG electrodes. Psychophysiol Newsletter 1962 (8): 10–16

    Google Scholar 

  5. Cooper R: Storage of silver chloride electrodes. EEG Clin Neurophysiol 1956 (8):692–696

    Article  CAS  Google Scholar 

  6. Roman JA and Lamb LE: Electrocardiography in flight. Aero Med 1962 (33):527–544

    CAS  Google Scholar 

  7. Parsons R: Electrode double layer. In: CA Hampel (ed) The Encyclopedia of Electrochemistry. Reinhold Publishing Co, New York 1964

    Google Scholar 

  8. Cooper R: Electrodes. Amer J EEG Tech 1963 (3): 91–101

    Google Scholar 

  9. MacFarlane PW and Veitch Lawrie TD: Comprehensive Electrocardiology Vol 1. Pergamon Press, Oxford 1972

    Google Scholar 

  10. Atkins AR: Measuring heart rate of an active athlete. Electron Eng 1961 (33):457–468

    Google Scholar 

  11. Kahn A: Motion artifacts and streaming potentials in relation to biological electrodes. Digest 6th Int Conf Med Electr Biol Eng 1965 (6):562–563

    Google Scholar 

  12. Johnson JB: Thermal agitation of electricity in conductors. Phys Rev 1928 (32):97–109

    Article  CAS  Google Scholar 

  13. Geddes LA and Baker LE: Chlorided silver electrodes. Med Res Eng 1967 (6):33–34

    PubMed  Google Scholar 

  14. Lucchina GG and Phipps CG: A vectorcardiographic lead system and physiologic electrode configuration for dynamic readout. Aero Med 1962 (33):722–729

    CAS  Google Scholar 

  15. Lucchina GG and Phipps CG: An improved electrode for physiological recording. Aero Med 1963 (34):230–231

    CAS  Google Scholar 

  16. Geddes LA, Baker LE, McGoodwin B: The relationship between electrode area and amplifier impedance in recording muscle action potentials. Med Biol Eng 1967 (5):561–568

    Article  Google Scholar 

  17. Geddes LA and Baker LE: The relationship between input impedance and electrode area in recording the ECG. Med Electr Biol Eng 1966 (4):439–450

    Article  CAS  Google Scholar 

  18. Breiman L, Friedman JH, Olshen R, Stone CJ: Classification and Regression Trees. Wadsworth, Belmont CA 1984

    Google Scholar 

  19. Breiman L: The method of estimating multivariate functions from noisy data. Technomet 1991 (33): 125–160

    Article  Google Scholar 

  20. Friedman JH: Multivariate adaptive regression splines. Ann Stat 1991 (19):1–14

    Article  Google Scholar 

  21. Chaudhuri P, Huang M, Loh W, Yao R: Piecewise polynomial regression trees. Statist Sinica 1994 (4): 143–167

    Google Scholar 

  22. Efron B and Tibshirani R: Statistical data analysis in the computer age. Science 1991 (253):390–395

    Article  PubMed  CAS  Google Scholar 

  23. Efron B: Bootstrap methods: Another look at the jackknife. Ann Stat 1979 (7):1–26

    Article  Google Scholar 

  24. Schlain BR, Lavin PT, Hayden CL: Using an auto-regressive model to detect departures from steady states in unequally spaced tumour marker data. Stat in Med 1992 (11):515–532

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faupel, M.L., Hsu, YS. (1996). Dedicated Systems for Surface Electropotential Evaluation in the Detection and Diagnosis of Neoplasia. In: Dixon, J.M. (eds) Electropotentials in the Clinical Assessment of Breast Neoplasia. ESO Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79994-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79994-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79996-9

  • Online ISBN: 978-3-642-79994-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics