Skip to main content

Evaluation of Dynamical Spectra for T = 0 Quantum Monte-Carlo Simulations: Hubbard Lattices and Continuous Systems

  • Conference paper
  • 122 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 80))

Abstract

Zero-temperature dynamical spectra for Hubbard lattices and simple atoms are obtained using ground state projection quantum Monte Carlo and the maximum entropy method. Once zero-temperature imaginary-time correlations are identified and calculated, maximum entropy deconvolutions produce results of similar quality as those obtained from finite temperature quantum Monte Carlo for which this method has been frequently employed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.N. Silver, D.S. Sivia, and J.E. Gubernatis, Phys. Rev. B 41, 2380 (1990); and in Quantum Simulations of Condensed Matter Phenomena, edited by J.E. Gubernatis and J.D. Doll, ( World Scientific, Singapore, 1990 ), p. 340.

    Google Scholar 

  2. J.E. Gubernatis, M. Jarrell, R.N. Silver, and D.S. Sivia, Phys. Rev. B 44, 6011 (1991).

    Google Scholar 

  3. J.W. Negele and H. Orland, Quantum Many-Particle Systems, (Addison- Wesley, Redwood City, 1988), ch. 8.

    Google Scholar 

  4. J. Skilling, in Maximum Entropy and Bayesian Methods, ed. J. Skilling (Kluwer Academic Publishers, Dordrecht, 1989), p. 45; in Maximum Entropy and Bayesian Methods, ed. P.F. Fougere ( Kluwer Academic Publishers, Dordrecht, 1990 ), p. 341.

    Google Scholar 

  5. S.F. Gull, in Maximum Entropy and Bayesian Methods, ed. J. Skilling ( Kluwer Academic Publishers, Dordrecht, 1989 ), p. 53.

    Google Scholar 

  6. S.R. White, Phys. Rev. B 44, 4670 (1991).

    Google Scholar 

  7. R.N. Silver, D.S. Sivia, J.E. Gubernatis, and M. Jarrell, Phys. Rev. Lett. 65, 496 (1990).

    Article  ADS  Google Scholar 

  8. J. Deisz, M. Jarrell, and D.L. Cox, Phys. Rev. B 42, 4869 (1990).

    Article  ADS  Google Scholar 

  9. For a review of quantum Monte Carlo applications of the maximum entropy method, see M. Jarrell and J.E. Gubernatis, preprint (1995).

    Google Scholar 

  10. R. Preuss, A. Muramatsu, W. von der Linden, P. Dietrich, F.F. Assaad, and W. Hanke, Phys. Rev. Lett 73, 732 (1994).

    Article  ADS  Google Scholar 

  11. J. Deisz, M. Jarrell, and D.L. Cox, Phys. Rev. B 48, 10227 (1993).

    Article  ADS  Google Scholar 

  12. M. Macivic and M. Jarrell, Phys. Rev. Lett 68, 1770 (1992).

    Article  ADS  Google Scholar 

  13. W. von der Linden, Phys. Rep. 220, 53 (1992).

    Article  ADS  Google Scholar 

  14. M. Caffarel, M. Reraf, and C. Pouchan, Phys. Rev. A 47, 3704 (1993).

    Article  ADS  Google Scholar 

  15. S. Sorella, E. Tosatti, S. Baroni, R. Car, and M. Parinello. Adriatico Research Conf. Towards the Theoretical Understanding of the High-Tc Su-perconductors, eds. S. Lundqvist, E. Tosatti, M. Tosi, and L. Yu ( World Scientific, Singapore, 1988 ).

    Google Scholar 

  16. S. Sorella, S. Baroni, R. Car, and M. Parinello, Europhys. Lett. 8, 663 (1989).

    Article  ADS  Google Scholar 

  17. W. von der Linden, I. Morgenstern, and H. De Raedt, Phys. Rev. B 41, 4669 (1990).

    Article  ADS  Google Scholar 

  18. J.E. Hirsch, Phys. Rev. B 28, 4059 (1983); Phys. Rev. Lett. 51, 1900 (1983); Phys. Rev. B 31, 4403 (1985).

    Google Scholar 

  19. D.M. Ceperly and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  20. B.J. Alder, D.M. Ceperly, and P.J. Reynolds, J. Phys. Chem. 86, 1200 (1982).

    Article  Google Scholar 

  21. P.J. Reynolds, D.M. Ceperly, B.J. Alder, and W.A. Lester, Jr., J. Chem. Phys. 77, 5593 (1982).

    Article  ADS  Google Scholar 

  22. X.-P. Li, D.M. Ceperly, and R.M. Martin, Phys. Rev. B 44, 10929 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deisz, J.J., von der Linden, W., Preuss, R., Hanke, W. (1995). Evaluation of Dynamical Spectra for T = 0 Quantum Monte-Carlo Simulations: Hubbard Lattices and Continuous Systems. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics VIII. Springer Proceedings in Physics, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79991-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79991-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79993-8

  • Online ISBN: 978-3-642-79991-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics