Advertisement

Growth and Etching of GaAs(001)

  • P. Šmilauer
  • D. D. Vvedensky
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 80)

Abstract

Recent progress in the atomic-scale modeling of epitaxial growth and chemical-beam etching of GaAs(001) using kinetic Monte Carlo simulations of a simple solid-on-solid model is reviewed. The additional activation barrier to interlayer transport emerges as a key factor for the evolution of the surface morphology during both growth and etching.

Keywords

Substrate Temperature Step Edge Singular Surface Kinetic Monte Carlo RHEED Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Molecular beam epitaxy, edited by A. Cho ( American Institute of Physics, New York, 1994 ).Google Scholar
  2. [2]
    W.T. Tsang, R. Kapre, and P.F. Sciortino, Appl. Phys. Lett. 62, 2084 (1993); W.T. Tsang, T.H. Chiu, and R.M. Kapre, Appl. Phys. Lett. 63, 3500 (1993).Google Scholar
  3. [3]
    G.H. Gilmer and P. Bennema, J. Appl. Phys. 43, 1347 (1972); J.D. Weeks and G.H. Gilmer, Adv. Chem. Phys. 40, 157 (1979).Google Scholar
  4. [4]
    S. Clarke and D.D. Vvedensky, Phys. Rev. Lett. 58, 2235 (1987).ADSCrossRefGoogle Scholar
  5. [5]
    See A. Madhukar and S.V. Ghaisas, CRC Critical Reviews in Solid State and Materials Science 14,1 (1988) for a review.Google Scholar
  6. [6]
    J.H. Neave, P.J. Dobson, B.A. Joyce, and J. Zhang, Appl. Phys. Lett. 47, 100 (1985).ADSCrossRefGoogle Scholar
  7. [7]
    H.C. Kang and W.H. Weinberg, J. Chem. Phys. 90, 2824 (1989).ADSCrossRefGoogle Scholar
  8. [8]
    A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, Eng-land 1988 ).Google Scholar
  9. [9]
    Z. Zhang, Y.-T. Lu, and H. Metiu, Surf. Sci. 255, L543 (1991); C.-L. Liu and J.B. Adams, Surf. Sci. 265, 262 (1992).Google Scholar
  10. [10]
    J. Zhang, J.H. Neave, P.J. Dobson, and B.A. Joyce, Appl. Phys. A 42, 317 (1987).ADSCrossRefGoogle Scholar
  11. [11]
    T. Shitara, D.D. Vvedensky, M.R. Wilby, J. Zhang, J.H. Neave, and B.A. Joyce, Phys. Rev. B 46, 6815 (1992); ibid. 46, 6825 (1992).ADSGoogle Scholar
  12. [12]
    A.K. Myers-Beaghton and D.D. Vvedensky, Phys. Rev. B 42, 5544 (1990); S. Stoyanov, Appl. Phys. A 50, 349 (1990).Google Scholar
  13. [13]
    J.H. Neave, B.A. Joyce, P.J. Dobson, and N. Norton, Appl. Phys. A 31,1 (1983); F. J. Grunthaner, A. Madhukar, T.C. Lee, and R. Fernandez, J. Vac. Sci. Technol. B 3,1317 (1985); A. Yoshinaga, M. Fahy, S. Dosanjh, J. Zhang, J.H. Neave, and B.A. Joyce, Surf. Sci. 264, L157 (1992).Google Scholar
  14. [14]
    D.D. Vvedensky and S. Clarke, Surf. Sci. 225, 373 (1990).ADSCrossRefGoogle Scholar
  15. [15]
    P. Smilauer and D.D. Vvedensky, Phys. Rev. B 48, 17603 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44, 1039 (1966).ADSCrossRefGoogle Scholar
  17. [17]
    R.L. Schwoebel andE. J. Shipsey, J. Appl. Phys. 37,3682 (1966); R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969).Google Scholar
  18. [18]
    S.G. Bales and A. Zangwill, Phys. Rev. B 41, 5500 (1990).ADSCrossRefGoogle Scholar
  19. [19]
    L.-M. Peng and M.J. Whelan, Proc. R. Soc. London 435, 257 (1991).ADSCrossRefGoogle Scholar
  20. [20]
    H.T.W. Zandvliet, H.B. Elswijk, D. Dijkkamp, E.J. van Loenen, and J. Dieleman, J. Appl. Phys. 70,2614 (1991); T. Shitara, J. Zhang, J.H. Neave, and B.A. Joyce, J. Appl. Phys. 71, 4299 (1992).Google Scholar
  21. [21]
    J. Villain, J. Phys. I (France) 1, 19 (1991).CrossRefGoogle Scholar
  22. [22]
    M.D. Johnson, C. Orme, A.W. Hunt, D. Graff, J.L. Sudijono, L.M. Sander, and B.G. Orr, Phys. Rev. Lett. 72, 116 (1994).ADSCrossRefGoogle Scholar
  23. [23]
    C. Orme, M.D. Johnson, J.L. Sudijono, K.T. Leung, and B.G. Orr, Appl. Phys. Lett. 64, 860 (1994).Google Scholar
  24. [24]
    P. Smilauer and D.D. Vvedensky (unpublished).Google Scholar
  25. [25]
    T. Kaneko, P. Smilauer, B.A. Joyce, T. Kawamura, and D.D. Vvedensky (unpublished).Google Scholar
  26. [26]
    R. Kunkel, B. Poelsema, L.K. Verheij, and G. Comsa, Phys. Rev. Lett. 65, 733 (1990).ADSCrossRefGoogle Scholar
  27. [27]
    B. Poelsema, L.K. Verheij, and G. Comsa, Phys. Rev. Lett. 53, 2500 (1984).ADSCrossRefGoogle Scholar
  28. [28]
    T. Michely, T. Land, U. Littmark, and G. Comsa, Surf. Sei. 272, 204 (1992).ADSCrossRefGoogle Scholar
  29. [29]
    P. Bedrossian, J.E. Houston, J.Y. Tsao, E. Chason, and S.T. Picraux, Phys. Rev. Lett. 67, 124 (1991); P. Bedrossian and T. Klitsner, Phys. Rev. Lett. 68, 646 (1992); P. Bedrossian, Surf. Sei. 301, 223 (1994).Google Scholar
  30. [30]
    Possible mechanisms for the annihilation of vacancies formed in lower layers and the role of adatom and vacancy migration are discussed in Refs. [28] and [35].Google Scholar
  31. [31]
    M. Bott, T. Michely, and G. Comsa, Surf. Sei. 272, 161 (1992).ADSCrossRefGoogle Scholar
  32. [32]
    J.A. Stroscio, D.T. Pierce, M. Stiles, A. Zangwill, and L.M. Sander (unpublished).Google Scholar
  33. [33]
    N. Haider, M.R. Wilby, and D.D. Vvedensky, Appl. Phys. Lett. 62, 3108 (1993).ADSCrossRefGoogle Scholar
  34. [34]
    A.F. Voter, Phys. Rev. B 34, 6819 (1986).Google Scholar
  35. [35]
    P. Smilauer, M.R. Wilby, and D.D. Vvedensky, Surf. Sei. Lett. 291, L733 (1993).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. Šmilauer
    • 1
    • 2
    • 3
  • D. D. Vvedensky
    • 2
    • 4
  1. 1.Interdisciplinary Research Center for Semiconductor MaterialsImperial CollegeLondonUK
  2. 2.The Blackett LaboratoryImperial CollegeLondonUK
  3. 3.Institute of PhysicsPraha 6Czech Republic
  4. 4.Department of PhysicsImperial CollegeLondonUK

Personalised recommendations