Phase Transitions in Multicomponent Widom-Rowlinson Models

  • J. L. Lebowitz
  • P. Nielaba
  • L. Šamaj
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 80)


We use Monte Carlo techniques to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. For M between two and six there is a direct transition from the gas phase at z < z d (M) to a demixed phase consisting mostly of one species at z > z d (M). For M ≥ 7 there is an intermediate ordered phase in which the even (or odd) sublattice is occupied preferentially by particles chosen at random from any of the species. The existence of such an intermediate phase was proven earlier for MM 0, M 0 very large. Exact calculations on the Bethe lattice give M0 = 4.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Widom, J.S. Rowlinson, J. Chem. Phys. 52, 1670 (1970).ADSCrossRefGoogle Scholar
  2. [2]
    D. Ruelle, Phys. Rev. Lett. 27, 1040 (1971).CrossRefGoogle Scholar
  3. [3]
    J.L. Lebowitz, E.H. Lieb, Phys. Lett A 39, 98 (1972).ADSCrossRefGoogle Scholar
  4. [4]
    J. Bricmont, K. Kuroda, J.L. Lebowitz, Z. Wahrscheinlichkeitstheor. Verw. Geb. 67, 121 (1984).MATHCrossRefGoogle Scholar
  5. [5]
    L.K. Runnels, J.L. Lebowitz, J. Math. Phys. 15, 1712 (1974).ADSCrossRefGoogle Scholar
  6. [6]
    J.L. Lebowitz, A. Mazel, P. Nielaba, L. Samaj, Phys. Rev. E (in press).Google Scholar
  7. [7]
    Finite Size Scaling and Numerical Simulation, edited by V. Privman (World Scientific, Singapore, 1990); M.N. Barber, in Phase Transitions and Critical Phenomena 8, edited by C. Domb and J.L. Lebowitz ( Academic, London, 1983 ).Google Scholar
  8. [8]
    K. Binder, Z. Phys. B 43, 119 (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. L. Lebowitz
    • 1
    • 2
  • P. Nielaba
    • 3
  • L. Šamaj
    • 4
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA
  2. 2.Department of PhysicsRutgers UniversityNew BrunswickUSA
  3. 3.Institut für Physik, KoMa 331Universität MainzMainzGermany
  4. 4.Courant InstituteN.Y.U.New YorkUSA

Personalised recommendations