Skip to main content

Axial and Tangential Velocity Components at the Exhaust End of a Highly Complex Cyclonic Flow

  • Conference paper
Developments in Laser Techniques and Applications to Fluid Mechanics

Abstract

Swirling flow, in which there is large scale rotation of the mean flow, is one of the well recognised configurations of flow. The use of vortex type flows are extremely widespread in a range of different devices and applications (1). The list of industrial operations in which they are used includes such diverse applications as the separation of gases of different molecular weights, Ranque-Hilsch tubes, cyclone dust separators, spray dryers, gas scrubbers, flash dryers, cyclone evaporators, combustion devices, plasma flame stabilisation, in agitators and in the piping associated with fluid turbo-equipment (2)(3)(4)(5)(6)(7)(8)(9)(10). Also fluidic vortex valves, and gas-core nuclear rockets are among the numerous practical devices, the performance of which is dominated by a confined turbulent vortex created by tangential injection of all or part of the through-flow (11)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Doherty, T., Biffin, M., Syred, N., The use of tangential offtakes for energy savings in process industries, Proc. Instn. Mech. Engineers Part E: Journal of Process Mechanical Engineering, vol. 206, 1992, pp 99–109

    Google Scholar 

  2. Gupta, A. K., Taylor, D. S., Beer, J. M., Investigation of combustion instabilities in swirling flows using real time LDV, Proc. Symposium on turbulent shear flows, Pennsylvania state university, April 1977

    Google Scholar 

  3. Beer, J. M., Chigier, N. A., Combustion aerodynamics, Applied Science Publishers, London, 1972

    Google Scholar 

  4. Syred, N., Hanby, V. I., Gupta, A. K., Resonant instabilities generated by swirl burners, Journal of the institute of fuel, vol 46, no. 387, p402–407, December 1973

    Google Scholar 

  5. Gupta, A. K., Combustion instabilities in swirling flames, Gas Warme International, vol 28, 1979, part 1, p55–66

    Google Scholar 

  6. Mabrouk M Algamil, Studies of coherent structures in vortex and swirling flows, UWCC, Msc thesis, 1991

    Google Scholar 

  7. Ito, S., Ogawa, K., Kuroda, C., Decay process of swirling flow in a circular pipe, International Chemical Engineering, Vol. 19, no. 4, Oct 1979, p 600–605

    Google Scholar 

  8. Bank, N., Gauvin, W. H., Measurements of flow characteristics in a confined vortex flow, The Canadian journal of Chemical Engineering, Vol. 55, August 1977, p 397–402

    Article  Google Scholar 

  9. Syred, N., Sidnu, B. S., Styles, A. C., Characteristics of swirling flow exhausing from nozzles with curved walls, UCC, dept mech eng, Wales, 1984

    Google Scholar 

  10. Gupta, A. K., Lilley, D. G., Syred, N., Swirl Flows, Abacus Press, Tunbridge Wells, Kent, 1984

    Google Scholar 

  11. Gouldin, F. C., Halthore, R. N., Vu, B. T., Periodic oscillations observed in swirling flow with and without combustion, 20th international symposium on combustion, the combustion institute, 1984, pp 269–276

    Google Scholar 

  12. Reydon, R. F., Gauvin, W. H., Theoretical and experimental studies of confined vortex flow, Can. J. Chem. Eng., 59, 1981, pp 14–23

    Article  Google Scholar 

  13. Baluev, E. D., Troyankin, Yu. V., Study of the aerodynamic structure of gas flow in a cyclone chamber, Teploenergetika, Vol. 14, No. 1, 1967, pp 63

    Google Scholar 

  14. Schowalter, W. R., Johnstone, H. F., Characteristics of the mean flow patterns and structure of turbulence in spiral gas streams, AIChE J. 6, 1960, pp 649

    Google Scholar 

  15. Smith, J. L., Journal of Basic Eng., Trans. A.S.M.E., Series E, 84, 602, 1962

    Article  Google Scholar 

  16. Liem, T. L., van der Akker, H. E. A., LDV measurements of the turbulent flow in gas cyclones, Kramers Laboratorium voor Fysische Technologie, Delft University of Technologie, Prins Bernhardlaan 6, 2628 BW Delf, Neatherlands, 1993

    Google Scholar 

  17. Schetz, J. A., Injection and mixing in turbulent flows., Martin Summerfield, 1980

    Google Scholar 

  18. Yazdabadi, P. A., Griffiths, A. J., Syred, N., Investigation into the precessing vortex core phenomenon in cyclone dust separators, Proc. Instn. Mech. Engrs., Vol 208, 1994, pp 147–154

    Google Scholar 

  19. Chanaud, R. C., Observations of oscillatory motion in certain swirling flows, J. Fluid Mechanics, vol 21 part 1, pp. 111–127, 1965

    Article  ADS  Google Scholar 

  20. Yazdabadi, P. A., Griffiths, A. J., Syred, N., Characterisation of the PVC phenomena in the exhaust of a cyclone dust separator, Experiments in Fluids, 17, 1994, pp 84–94

    Article  ADS  Google Scholar 

  21. Kline, S. J., McClintok, I. A., Describing Uncertanties in Single-Sample Experiments, Mechanical Engineering, January, 1953, p 3–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yazdabadi, P.A., Griffiths, A.J., Syred, N. (1996). Axial and Tangential Velocity Components at the Exhaust End of a Highly Complex Cyclonic Flow. In: Adrian, R.J., Durão, D.F.G., Durst, F., Heitor, M.V., Maeda, M., Whitelaw, J.H. (eds) Developments in Laser Techniques and Applications to Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79965-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79965-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79967-9

  • Online ISBN: 978-3-642-79965-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics