Advertisement

LDV—measurements on wide gap instabilities in spherical Couette flow

  • Christoph Egbers
  • Hans J. Rath
Conference paper

Abstract

A new type of instability during the laminar-turbulent transition of a viscous incompressible fluid flow in the gap between two concentric spheres, where only the inner sphere rotates (spherical Couette flow), was detected. In case of two relatively wide gap widths (β = 0.33 and β = 0.5) it was found that the well-known Taylor-instability does not exist. At the stability threshold, where the laminar basic flow loses its stability, the first instability manifests itself as a break of the spatial symmetry and non-axisymmetric secondary waves with spiral arms appear. They spread from the pole to the equator. With increasing the Reynolds number above the critical one, the number of secondary waves with spiral arms decreases. Flow visualization studies and simultaneously laser-Doppler-velocimeter measurements show that the transition of the secondary wave flow with spiral arms is periodic and quasi-periodic before small scale turbulent structures occur.

Keywords

Secondary Wave Outer Sphere Azimuthal Velocity Concentric Sphere Taylor Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andereck, C.D., Liu, S.S. and Swinney, H.L. (1986): Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech., vol. 164, 155–183ADSCrossRefGoogle Scholar
  2. Bar-Yoseph, P., Solan, A., Hillen, R. and Roesner, K G. (1990): Taylor vortex flow between eccentric coaxialrotating spheres. Phys. Fluids A 2 (9), pp. 1564–1573ADSCrossRefGoogle Scholar
  3. Bar-Yoseph, P., Roesner, KG. and Solan, A. (1992): Vortex breakdown in the polar region between rotating spheres. Phys. Fluids A 4 (8), pp. 1677–1686ADSCrossRefGoogle Scholar
  4. Bartels, F. and Krause, E. (1979): Taylor-Vortices in Spherical Gaps. in: Laminar-Turbulent Transition IUTAM-Symp. Stuttgart, SpringerGoogle Scholar
  5. Belyaev, Yu.N., Monakhov, A.A., Scherbakov, S.A. and Yavorskaya, I.M. (1984): Some routes to turbulence in spherical Couette Flow. in: Kozlov, V.V. (ed.): Laminar-TurbulentTransition. IUTAM-Symp. Novosibirsk/USSR, SpringerGoogle Scholar
  6. Bonnet, J.P. & Alziary de Roquefort, T. (1976): Ecoulement entre deux spheres concentriques en rotation. J. Mec., vol. 13, pp. 373MathSciNetADSGoogle Scholar
  7. Bratukhin, Yu. K. (1961): On the evaluation of the critical Reynolds number for the flow of fluid between two rotating spherical surfaces. PMM, vol.25, No.5, pp. 858–866Google Scholar
  8. Bühler, K. (1985): Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. VDI-Berichte, Reihe7: Strömungstechnik Nr.96Google Scholar
  9. Bühler, K. and Zierep, J. (1984): New secondary instabilities for high Re-number flow between two rotating spheres. in: Kozlov, V.V. (ed.): Laminar- TurbulentTransition. IUTAM-Symp. Novosibirsk/USSR, Springer, Berlin, Heidelberg, NewYork, TokyoGoogle Scholar
  10. Bühler, K. and Zierep, J. (1986): Dynamical instabilities and transition to turbulence in spherical gap flows. in: Comte-Bellot, G. and Mathieu, J.: Advances in turbulence. Proc. 1st Europ. Turb. Conf., Lyon, France, 1–4 July, Springer, Berlin, Heidelberg, NewYork, London, Paris, TokyoGoogle Scholar
  11. Buzug, Th., v. Stamm, J. and Pfister, G. (1992): Fractal dimensions of strange attractors obtained from the Taylor-Couette experiment. Phys. A, 191, 559CrossRefGoogle Scholar
  12. Buzug, Th., v. Stamm, J. and Pfister, G. (1993): Characterization of period-doubling scenarios in Taylor- Couette flow. Physical Review E, 47, no. 2, 1054–1065ADSCrossRefGoogle Scholar
  13. Dennis, S.C.R. and Quartapelle, L. (1984): Finite difference solution to the flow between two rotating spheres. Comp. Fluids, vol. 12, pp. 77ADSMATHCrossRefGoogle Scholar
  14. Egbers, C.(1994): Zur Stabilität der Strömung imkonzentrischen Kugelspalt. Dissertation, Universität BremenGoogle Scholar
  15. Egbers, C. and Rath, H.J. (1995): The existence of Taylor vortices and widegap instabilities in spherical Couette flow. Acta Mech. 111,3–4,125–140Google Scholar
  16. Fenstermacher, P.R., Swinney, H.L. and Gollub, J.P. (1979): Dynamic instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech., 94, parti, 103–128ADSCrossRefGoogle Scholar
  17. Gardayskj, J. and Hrbek, J. (1989): Refraction Correction for LDV-Measurements in Circular Tubes within Rectangular Optical Boxes. DANTEC 8Google Scholar
  18. Kekoe, A.B. and Desai, P.V. (1987): Compensation for refractive-index variations in laser-Doppler-anemometry. Applied Optics 26,2582–2591ADSCrossRefGoogle Scholar
  19. Khlebutin, G.N. (1968): Stability of fluid motion between a rotating and a stationary concentric sphere. Fluid Dynamics Vol.3, No.6, p.31–32ADSCrossRefGoogle Scholar
  20. Markus, P.S. and Tuckerman, L.S. (1987a): Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech., vo1 185, 1–30ADSCrossRefGoogle Scholar
  21. Markus, P.S. and Tuckerman, L.S. (1987b): Simulation of flow between concentric rotating spheres. Part 2. Transitions. J. Fluid Mech., vol l85, 31–65Google Scholar
  22. Meijering, A. (1993): Anwendung der Laser-Doppler-Anemometrie für Strömungsuntersuchungen im Spalt zwischen zwei konzentrisch rotierenden Kugeln. Diplomarbeit, Universität Bremen, FB 4, ZARMGoogle Scholar
  23. Munson, B.R. and Joseph, D.D. (1971a): Viscous incompressible flow between concentric rotating spheres. Parti: Basic flow. J. Fluid Mech. vol. 49, part2, pp. 289–303ADSMATHCrossRefGoogle Scholar
  24. Munson, B.R. and Joseph, D.D. (1971b): Viscous incompressible flow between concentric rotating spheres. Part2: Hydrodynamic stability. J. Fluid Mech. vol.49, part2, pp. 305–318ADSMATHCrossRefGoogle Scholar
  25. Munson, B.R. and Menguturk, M. (1975):Viscous incompressible flow between concentric rotating spheres. Part 3: Linear stability and experiments. J. Fluid Mech., vol. 69, 705–719ADSMATHCrossRefGoogle Scholar
  26. Nakabayashi, K. (1983): Transition of Taylor-Görtler vortex flow in spherical Couette flow. J. Fluid Mech., vol. 132, pp. 209–230ADSCrossRefGoogle Scholar
  27. Nakabayashi, K. and Tsuchida, Y. (1988): Spectral study of the laminar-turbu- lent transition in spherical Couette flow. J. Fluid Mech., vol. 194, 101–132ADSCrossRefGoogle Scholar
  28. Ritter, C.F. (1973): Berechnung der zähen, inkompressiblen Strömung im Spalt zwischen zwei konzentrischen, rotierenden Kugelflächen. Dissertation. Universität KarlsruheGoogle Scholar
  29. Ruck, B. (1990) Lasermethoden in der Strömungsmeßtechnik. AT-Fachverlag, StuttgartGoogle Scholar
  30. Sawatzki, O. und Zierep, J. (1970): Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflächen, von denen die innere rotiert. Acta Mech. 9, 13–35CrossRefGoogle Scholar
  31. Schrauf, G. (1986): The first instability in spherical Taylor-Couette flow. J. Fluid Mech., vol. 166, pp. 287–303ADSMATHCrossRefGoogle Scholar
  32. Sorokin, M.P., Khlebutin, G.N. and Shaidurov, G.F. (1966): Study of the motion of a liquid between two rotating spherical surfaces. J. Appl. Mech. and Tech. Phys., vol.6, pp.73–74ADSGoogle Scholar
  33. v. Stamm, J., Buzug, Th. and Pfister, G. (1993): Frequency locking in axisymmetric Taylor-Couette flow. submitted to Physical Review E.Google Scholar
  34. Taylor, G.J. (1923): Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. A223, 289–293Google Scholar
  35. Waked, A.M. and Munson, B.R. (1978): Laminar-turbulent flow in spherical annulus. Trans. ASME I, J. Fluids Engng., vol. 100, pp. 281CrossRefGoogle Scholar
  36. Wimmer, M. (1976): Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech., vol. 78, part2, 317–335ADSCrossRefGoogle Scholar
  37. Wimmer, M. (1981): Experiments on the stability of viscous flow between two concentric rotating spheres. J. Fluid Mech., vol.103, 117–131ADSCrossRefGoogle Scholar
  38. Yakushin, V.I. (1970): Instability of the motion of a liquid between two rotating spherical surfaces. Fluid Dynamics, vol.5, no.2, p. 660–661ADSGoogle Scholar
  39. Yavorskaya, I.M., Belyaev, Yu.N. and Monakhov, A.A. (1975): Experimental study of a spherical Couette flow. Sov. Phys. Dokl., vol. 20, 4, 256–258Google Scholar
  40. Yavorskaya, I.M., Belyaev, Yu.N., Monakhov, A.A., Astaf’eva, N.M, Scherbakov, S.A. and Vvedenskaya, N.D. (1980): Stability, non-uniqueness and transition to turbulence in the flow between two rotating spheres. IUTAM-Symposium, TorontoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Christoph Egbers
    • 1
  • Hans J. Rath
    • 1
  1. 1.Center of Applied Space Technology and Microgravity (ZARM)University of BremenBremenGermany

Personalised recommendations