Skip to main content

Carbon Sequestration by Marine Biota

  • Conference paper
Carbon Sequestration in the Biosphere

Part of the book series: NATO ASI Series ((ASII,volume 33))

Abstract

Carbon sequestration by marine biota maintains the atmospheric levels of CO2 at 200 ppm less than an abiotic ocean (Volk and Hoffert, 1985). A review is presented of the processes that control the efficiency of carbon cycling through the marine biota. This is essentially to assess the ability of the marine biota to sequester anthropogenic CO2. At present, it is not clear whether interannual variations and episodic events in biological productivity produce a net uptake of atmospheric CO2. To increase the sequestration of atmospheric CO2 by the marine biota requires either increasing new production or delaying the remineralization of organic matter. Suggestions are presented on how to enhance the carbon sequestration by the marine biota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banse K (1991) False advertising in the greenhouse? Global Biogeochem. Cycles. 5, 305.

    Article  CAS  Google Scholar 

  • Broecker WS (1991) Keeping global change honest. Global Biogeochem. Cycles. 5, 191.

    Article  CAS  Google Scholar 

  • Chisholm SW; Morel FM (eds) (1991) What controls phytoplankton production in nutrient-rich areas of the open sea. Limnology and Oceanography, 36, presented at the American Soc. of Limnol. and Oceanogr. Symposium, San Marcos, California, 22-24 Feb.

    Google Scholar 

  • De Angelis M; Barkov NI; Petrov VN (1987) Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core. Nature, 325, 318.

    Article  Google Scholar 

  • Eppley RW (1989) New Production: history, methods, problems, in Productivity of the Ocean: Present and Past, edited by W. H. Berger et al pp 85–97, Wiley & Sons, New York.

    Google Scholar 

  • Frost B (1991) The role of grazing in nutrient-rich areas of the open sea. Limnol. Oceanogr. 36, 1616–1630.

    Article  Google Scholar 

  • Grice GD; Reeve MR (eds) (1982) Marine Mesocosms. 430 pp Springer-Verlag, New York.

    Google Scholar 

  • Kolber ZS; Barber RT; Coale KH; Fitzwater SE; Greene RM et al (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 371, 145–149.

    Article  CAS  Google Scholar 

  • Levitus S; Conkright ME; Reid JL; Najjar RG (1993) Distribution of nitrate, phosphate and silicate in the world oceans. Prog Oceanogr. 31, 245–273.

    Article  Google Scholar 

  • Longhurst AR (1991a) A reply to Broecker’s charges. Global Biogeochem. Cycles, 5, 315.

    Article  CAS  Google Scholar 

  • Longhurst AR (1991b) Role of marine biosphere in the global carbon cycle. Limnol. Oceanogr., 36, 1507–1526.

    Article  CAS  Google Scholar 

  • Martin, J. H. (1990) Glacial-Interglacial CO2 change: The iron hypothesis. Paleocenogr., 5, 1.

    Article  Google Scholar 

  • Martin JH; Coale KH; Johnson KS; Fitzwater SE; Gordon RM et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129.

    Article  CAS  Google Scholar 

  • Martin JH; Gordon RM; Fitzwater SE; Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res. 36, 649.

    Article  CAS  Google Scholar 

  • Menzel DW; Case J (1977) Concept and design: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27, 1–7.

    Google Scholar 

  • Merlivat L; Etcheto J; Boutin J (1991) CO2 exchange at the air-sea interface: time and space variability. Adv. Space Res. 11, 77–85.

    Article  CAS  Google Scholar 

  • Mortlock RA; Charles CD; Froelich PN; Zibello MA; Saltman K et al (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220.

    Article  Google Scholar 

  • Peng TH; Broecker WS (1987) Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observations and model. Tellus 39B, 429–458.

    Google Scholar 

  • Tans P; Fung I; Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247, 1431–1438.

    Article  CAS  Google Scholar 

  • Volk T; Hoffert MI (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in Ocean driven atmospheric CO2 changes, in The carbon cycle and atmospheric CO2: natural variations archean to present, edited by E T Sundquist et al pp 99-110, American Geophysical Union..

    Google Scholar 

  • Watson AJ; Law CS; Scoy KAV; Millero FJ; Yao W et al (1994) Minimal effect of iron fertilization of sea-surface carbon dioxide concentrations. Nature 371, 143–145.

    Article  CAS  Google Scholar 

  • Wefer G (1989) Particle flux in the Ocean: Effects of episodic production, in Productivity of the Ocean: Present and Past, edited by WH Berger et al pp 139–154, Wiley & Sons, New York.

    Google Scholar 

  • Wong CS; Harrison PJ (eds) (1992) Marine Ecosystem Enclosed Experiments. 439 pp International Development Research Centre, Ottawa.

    Google Scholar 

  • Wong CS; Honjo S (1984) Material flux at weather station PAPA: High frequency time series observations through production cycles. EOS 65, 225.

    Google Scholar 

  • Wong CS; Matear RJ (1993) The storage of anthropogenic carbon dioxide in the ocean. Energy Convers. Mgmt. 34, 873–880.

    Article  CAS  Google Scholar 

  • Wong CS; Matear RJ (1994) Assessing the impact of disposing of carbon dioxide in the ocean, accepted by Global and Planetary Change.

    Google Scholar 

  • Wong CS; Whitney FA; Iseki K; Page JS; Zeng J (1994) Analysis of trends in primary productivity and chlorophyll-a over two decades at Ocean Station P (50°N, 145°W) in the subarctic Northeast Pacific Ocean. Can. J. Fish. Aq. Sci. in press.

    Google Scholar 

  • World Meteorological Organization Global Change and the Air/Sea exchange of chemicals, GESAMP Report No 48, (1991).

    Google Scholar 

  • Young RW; Carder KL; Betzer PR; Costello DK; Duce RA et al (1991) Atmospheric iron inputs and primary productivity: phytoplankton response in the North Pacific. Global Biogeochem. Cycles 5, 119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wong, C.S., Matear, R.J. (1995). Carbon Sequestration by Marine Biota. In: Beran, M.A. (eds) Carbon Sequestration in the Biosphere. NATO ASI Series, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79943-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79943-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79945-7

  • Online ISBN: 978-3-642-79943-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics