Skip to main content

High Performance Sewage Treatment for Reduced Infrastructure Costs

  • Chapter
  • 253 Accesses

Abstract

The European Guideline for wastewater discharges distinguishes between three zones : less sensitive, normal and sensitive. A tight schedule has been set to achieve certain effluent standards for each area, requiring extensive upgrading and construction of wastewater treatment plants throughout Europe. To achieve the objectives within reasonable investment and operational cost as well as with limited land use and reduced nuisances, high performance treatment system has to be implemented.

Physico-chemical treatment allows a considerable removal of pollution in a rather simple and energy-efficient way. If coupled with lamella settling on parallel plates, ,space use is about one tenth of conventional primary treatment. To polish the effluent of the primary stage, Biocarbone aerated filters combine biodegradation with very high removal rates and retention of particles in one reactor, without additional clarification or filtration.

This chapter shows the use of these three systems depending on the required treatment objective. The impact of the first stage on the performance of the bioreactor is studied at several sites where chemicals are used seasonally to remove peak loads. Solids removal and biodegradation efficiency can be balanced between the physico-chemical and biological treatment. Large scale examples of compact technology and the operational flexibility is demonstrated, including plants exceeding capacities of 100 000 p.e. with very low environmental impacts that are located in downtown districts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ardern E. and W.T. Lockett, Oxidation of Sewage Without Filters, J. Chem. Ind. Vol. 33, p. 523, 1914.

    Article  CAS  Google Scholar 

  2. Baccquet G., J.C. Joret, F. Rogalla and M.M. Bourbigot, Biofilm Start up and Control in Aerated Biofilters, Env. Tech, Vol. 12, pp. 747–756, 1991.

    Google Scholar 

  3. Bagg W.K. et al., Verification of the Bisubstrate Concept in Modelling of Activated Sludge, Wat. Res. Report UTC W 56, 1986.

    Google Scholar 

  4. Barnard J.L., Review of Biological Phosphorus Removal in Activated Sludge, Wat. S.A., Vol.2, p.136, 1976.

    Google Scholar 

  5. Bebin J. et al., Reflexions sur les performances et la fiabilite des stations d’epuration des eaux residuaires urbaines, TSM, Dec., 1992.

    Google Scholar 

  6. Bidstrup S.M. and C.P.L. Grady, Simulation of Single Sludge Processes, JWPCF, Vol. 60, No. 3, pp. 351–361, 1988.

    CAS  Google Scholar 

  7. Bohncke B. and J. Pinnekamp, Differences in Single–and Two Stages Activated Sludge Plants for Nitrification and Denitrification (in German), Kor Abw., Vol. 33, No. 11, pp. 1125–1135, 1986.

    Google Scholar 

  8. Boller M. and W. Gujer, Nitrification in Tertiary Trickling Filters, Wat. Res., Vol. 20, No. 11, pp. 1363–1373, 1986.

    CAS  Google Scholar 

  9. Bourdon F., J. Jarosz, G. Lavergne and A. Mallen, Marseille Sewage Treatment Plant: 300 days of Performance Demonstration Including Automatic Reagent Dosing (in French), TSM l’eau, Vol. 84, No. 5, pp. 311–322, 1989.

    Google Scholar 

  10. Bundgaard E. and J. Pedersen, Full Scale Experience with Biological and Chemical Phosphorus Removal, 4th Gothenburg Symposium, Madrid, 1990.

    Google Scholar 

  11. Buhr H.O. et al., Making Full Use of Step Feed Capability, Journal WPCF, Vol. 56, No.4, pp.325–330, 1984.

    Google Scholar 

  12. Canler J.P. et al., BAF: Assessment of the Process Based on 12 Water Treatment Plants, IAWQ Biofilm Conferences, Paris, Sept. 1993.

    Google Scholar 

  13. Churchley J., W. Lilley and J. Upton, Operational Experiences of Chemical Addition for Enhanced Organics Removal, Severn Trent Water Report 0665 R.

    Google Scholar 

  14. Commission of The European Communities: Directive Reading the Treatment of Urban Effluents, Official Journal C300 /8, 1989.

    Google Scholar 

  15. Cooper P.F., Advances in Sewage Effluent Denitrification, Wat. Poll. Control, Vol.300, pp.389–401, 1977.

    Google Scholar 

  16. Culp G., S. Hansen and G. Richardson, High Rate Sedimentation in Water Treatment Works, JAWWA, Vol. 60, No. 6, p. 681, 1968.

    Google Scholar 

  17. Desbos G., C. Laplace and F. Rogalla, Extended Coagulation for Reagent and Space Saving with Wastewater Lamella Settling, 4th Gothenburg Symp, Madrid, in HH.Hahn and R.Klute (Eds.) Chemical Treatment, Springer Ver., Berlin, 1989.

    Google Scholar 

  18. Dillon G. and V. Thomas, Biocarbone Evaluation for Settled Sewage Treatment and Tertiary Nitrification, Wat. Sci. Tech., Vol.22, No. 1 /2, pp. 305–316, 1989.

    Google Scholar 

  19. Dillon G. and V. Thomas, Biocarbone Process for Treatment with Floating Filters (in Danish), Special Report to the Danish Environmental Protection Agency, 1990.

    Google Scholar 

  20. Dold P.L. et al., A General Model for Activated Sludge, Proc. Wat. Tech., Vol.12, pp.47–77, 1980.

    Google Scholar 

  21. Downing A.L., H.A. Painter and G. Knowles, Nitrification in the Activated Sludge Process, J. Inst. Sew. Purif., pp. 130–158, 1964.

    Google Scholar 

  22. Firk W. and N. Gahndehari, Optimizing a Process Combining Hightest-loaded Activated Sludge and Biologically Intensified Filtration, Wat. Sci. Tech., Vol. 19, pp. 981–992, 1986.

    Google Scholar 

  23. Florentz M., M.C. Hascoet and F. Bourdon, Biological Phosphorus Removal at an Experimental Full Scale Plant in France, J. Civil Eng., Vol. 14, 1987.

    Google Scholar 

  24. Forsell B. and B. Hedstrom, Lamella Sedimentation - A Compact Separation Technique, J.W.P.C.F., Vol. 47, p. 834, 1975.

    Google Scholar 

  25. Franci Goncalves R. et al., Biological Phosphorus Removal in Fixed Films Reactors, AGHTM Montpellier, Wat. Sci. Tech., March-April 1992.

    Google Scholar 

  26. Franci Goncalves R. and F. Rogalla, Continuous Biological Phosphorus Removal in a Biofilm Reactor, Wat. Sci. Tech., Vol. 26, No. 9–11, pp. 2027–2030, 1992.

    Google Scholar 

  27. Fuchu Y., H. Kimura and E. Tochilubo, Advanced Sewage Treatment by BAF Process, 5th World Filtration Congress, Nice, June 1990.

    Google Scholar 

  28. Gilles P. and J. Sibony, Industrial Scale Applications of Fixed Biomass Reactors: Design and Operational Results, Wat. Sci. Tech., Vol.22, No. 1 /2, pp. 281–292, 1990.

    Google Scholar 

  29. Gilles P. and Y. Bouron, Nitrification and Denitrification with Fixed Bacteria (in French), L’Eau l’Industrie les Nuisances, Vol. 93, No. 6, pp. 53–57, 1985.

    CAS  Google Scholar 

  30. Gousailles M. et al., Purification of Wastewater from the Paris Conurbation : Biological Removal of Nitrogen at the Valenton Purification Plant, Wat. Sci. Tech., Kyoto, Vol.23, pp.773–779, 1991.

    Google Scholar 

  31. Gujer W. and D. Jenkins, A Nitrification Model for the Contact Stabilization Activated Sludge Process, Wat. Res., Vol. 9, pp. 561–566, 1974.

    Google Scholar 

  32. Gujer W., Activated Sludge Modelling and Simulation, Wat. Sci. Tech., Vol. 23, pp.1011–1023, 1991.

    Google Scholar 

  33. Haberer K., Filtration Flocculation for Coagulation Filters (in German), Vom Wasser, Vol.39, p.147, 1972.

    Google Scholar 

  34. Harremoes P., Criteria for Nitrification in Fixed Film Reactors, Wat. Sci. Tech., Vol.14, pp.167–178, 1982.

    Google Scholar 

  35. Hazen A., On Sedimentation, Transactions ASCE, Vol.53, p.45, 1904.

    Google Scholar 

  36. Heduit A. and D.R. Thevenot, Relation Between Redox Potential and Oxygen Levels in Activated Sludge Reactors, Conf. IAWPRC, Brighton (1988), Wat. Sci. Tech., Vol. 21, pp. 947–956, 1989.

    CAS  Google Scholar 

  37. Hegemann W. and E. Engelmann, Belebungsverfahren mit Schaumstoffkorpern zur Aufkonzentrierung von Biomasse, GWF Wasser/Abw., Vol. 127, No. 9, pp. 415–421, 1987.

    Google Scholar 

  38. Henze M. et al., IAWPRC Activated Sludge Model, Report No.1, 1986.

    Google Scholar 

  39. Hsu D.Y. et al., Increasing Blue Plains WWTP Capacity through Nitrification Process Modification, 60th WPCF Annual Conference, 1987.

    Google Scholar 

  40. Ignajtovic L., Efficient Tube Settling Tanks, Wat. Sci. Tech., Vol.24, No.7, pp.223–228, 199L

    Google Scholar 

  41. Jenkins D. and D. Ohron, The Mechanism of the Contact Stabilization Activated Sludge Process, Proc. 6th IAWPRC Conf., Jerusalem, Pergamon, 1972.

    Google Scholar 

  42. Jepsen S.E. and J. La Cour Jansen, Biological Filters for Post-denitrification, Aquatech, Amsterdam, August 31st to September 4th, 1992.

    Google Scholar 

  43. Karlsson I., Chemical Treatment Alternative or Complement to Biological Treatment, Chemical Treatment, Schr. Reihe WaBoLu 62, Fisher Ver., Stuttgart, 1985.

    Google Scholar 

  44. Kraft A. and C.F. Seyfried, Biological Intensified Filtration for Advanced Wastewater Treatment, Wat. Sci. Tech., Vol.22, IAWPRC Conf. on Biofilm Reactors, Nice, 1989 and 1990.

    Google Scholar 

  45. Kurbiel J., A. Sapulak and H. Schade, Turbulent Pipe Flow for Precipitating Electroplating Wastewater, Wat. Sci. Tech., Vol.24, No.7, pp.255–259, 1991.

    Google Scholar 

  46. Kurbiel J., Upflow Contact Filtration of Biologically Treated Wastewater Treatment for Reclamation, Tribune Cebedeau, Vol. 520, No. 40, pp. 33–37, 1987.

    Google Scholar 

  47. Leglise J.P., P. Gilles, and H. Moreaud, A New Technology Development: The Biocarbone Aerated Filter, 53rd WPCF Conference, Las Vegas, 1980.

    Google Scholar 

  48. Lesouef A. et al., Optimizing Nitrogen Removal Reactors with the Activated Sludge Model, IAWPRC Biomass Reactor Seminar, Copenhagen, Wat. Sci. Tech., Vol.25, No.6, pp.105–123, August 1991.

    Google Scholar 

  49. Lilly W. et al., High Quality Effluent production with the Biofiltration Process, JIWEM 5, W, Midlands Meeting, Birmingham, October 10, 1989.

    Google Scholar 

  50. Meijer H.A., Rotterdam-Dokhaven Sewage Treatment Plant - A Large Installation in the Midst of a Residential Area, Wat. Sci. Tech., Vol.20, No.4/5, 1988.

    Google Scholar 

  51. Miyaji Y. et al., Biological Nitrogen Removal by Step Feed Process, Proc. Wat. Sci. Tech., Vol.12, pp. 193–202 (IAWPRC Toronto), 1980.

    Google Scholar 

  52. Morales Liliana et al., Capability Assessment of Biological Nutrient Removal Facilities, Research Journal WPCF, Vol.63, No.6, 1991.

    Google Scholar 

  53. Moreaud H. and P. Gilles, Elimination of Nitrogen in Wastewater, TSM l’Eau, Vol. 74, No. 4, pp. 241–250, 1979.

    Google Scholar 

  54. Morissey S.P. and D.R.F. Harleman, Retrofitting Primary Treatment for Chemical Enhancement in the US, 5th Gothenburg Symp. Nice in H.H. Hahn and R. Klute (Eds.), Chemical Treatment, Springer Ver., Berlin 1992.

    Google Scholar 

  55. Murcott S.E. and D.R.F. Harleman, Performance and Innovations in Wastewater Treatment, Technical Note, Vol. 36, R.M. Parsons Lab., LIT, Feb. 1992.

    Google Scholar 

  56. Nieuwstad T.J. et al., Elimination of Microorganisms from Wastewater by Tertiary Precipitation followed by Filtration, Wat. Res., Vol.22, No.1, pp.1389–1397, 1988.

    Google Scholar 

  57. Odegaard H. and B. Rusten, Upgrading Municipal Wastewater Treatment Plants by Introduction of Aerated Submerged Biological Filters, Wat. Sci. Tech., Vol.22, No. 7 /8, 1989.

    Google Scholar 

  58. Paffoni C., M. Gousailles, F. Rogalla, and P. Gilles, Aerated Biofilters for Nitrification and Effluent Polishing, Wat. Sci. Tech., Vol.22, No. 7 /8, 1989.

    Google Scholar 

  59. Parker D. et al., Enhancing Reaction Rates in Nitrifying Trickling Filters through Biofilm Control, Journal WPCF, Vol.61, No.5, pp.618–631, 1989.

    Google Scholar 

  60. Payraudeau M. et al., Aerated Biofilters for Advanced Treatment (in German), GWF Wasser Abwasser, Vol. 131, No. 4, pp. 178–185, 1989.

    Google Scholar 

  61. Pickard D.W. et al., Six years of Successful Nitrogen Removal at Tampa, Florida, WPCF Annual Meeting, October 8, 1985.

    Google Scholar 

  62. Payraudeau M. et al., Nutrient Removal with Biological Aerated Filters, JWPCF, Vol.62, No.2, pp.169–176, 1990.

    Google Scholar 

  63. Popel H.J., Fundamentals of Nitrogen Removal, GWF Was/Abw., Vol.128, No.8, pp.415–453, 1987.

    Google Scholar 

  64. Pujol R., J.P. Canler, and A. Iwema, Biological Aerated Filters, An Attractive Alternative, Wat. Sci. Tech., Vol.26, No. 3 /4, pp. 693–702, 1992.

    Google Scholar 

  65. Pujol R. et al., Bulking and Foaming in Activated Sludge, Wat. Res., 1992.

    Google Scholar 

  66. Rad H. and J.T. Crosse, Chemically Assisted Primary Treatment to Upgrade Overloaded Plants, 63rd WPCF Conf. Washington, 1990.

    Google Scholar 

  67. Ravarini P., J. Couttelle, G. De Larminat and F. Rogalla, Biological Nitrate and Ammonia Removal at Large Scale, JIWEM, Vol. 4, No. 4, pp. 319–329, 1990.

    Google Scholar 

  68. Rensink J.H. et al., Biological Phosphorus Sludge Loading, GWF Was. Abw., Vol.127, No.9, pp.449–453, 1986.

    Google Scholar 

  69. Richard Y. and G.M. Faup, Removal of Nitrogen Compounds by Fixed Cultures in Upflow Beds, Proceedings IWSA, Conf. Zurich, SS 7, pp. 1–9, 1982.

    Google Scholar 

  70. Roennefahrt K. W.,Nitrate Elimination with Heterotrophic Aquatic Microorganisms in Fixed Bed Systems with Buoyant Carriers, Aqua, Vol. 5, pp. 283–285, 1986.

    Google Scholar 

  71. Rogalla F. and M.M. Bourbigot, New Developments in Complete Nitrogen Removal with Biological Aerated Filters, Wat. Sci. Tech., Vol.22, No. 1 /2, pp. 273–290, 1990.

    Google Scholar 

  72. Rogalla F. et al., Upscaling Compact Nitrogen Removal Process, Wat. Sci. Tech., Vol.26, No.5/6, pp.1067–1076, 1994.

    Google Scholar 

  73. Rogalla F. et al., Minimising Nuisances by Covering Compact Sewage Treatment Plants, Wat. Sci. Tech., Vol.25, No. 4–5, pp.363–374, 1993.

    Google Scholar 

  74. Rogalla F., G. Roudon, P. Ravarini and F. Bourdon, Continuous Follow-up of BAF with on Line Sensors, 5th IAWPRC ICA Workshop, Kyoto in R. Briggs (Eds.) Adv. Wat. Pol. Control, Pergamon, Oxford, 1990.

    Google Scholar 

  75. Sagberg P., R. Soether and A. Baggerud Berge, Increasing the Surface Load for Direct Precipitation, 4th Gothenburg Symp., Madrid, in H.H. Hahn and R. Klute (Eds.), Chemical Treatment, Springer Ver., Berlin, 1990.

    Google Scholar 

  76. Sauvegrain P. et al., Reduced Hydraulic Detention Time for Nutrient Removal, Wat. Sci. Tech., Vol.24, No.10, pp.217–229, 1991.

    Google Scholar 

  77. Sibony J. and F. Rogalla, Biocarbone Aerated Filters–Ten Years After: Past, Present and Plenty of Potential, Wat. Sci., Vol. 26, No. 9–11, pp. 2043–2148, 1992.

    Google Scholar 

  78. Schlegel S., Use of Submerged Trickling Filter Media for Nitrification, Wat. Sci. Tech., pp.177–187, 1987.

    Google Scholar 

  79. Seyfried C.F., Personal Communication, University of Hanover, Germany, 1990.

    Google Scholar 

  80. Solfrank U. and Gujer W., Characterisation of Domestic Wastewater for Mathematical Modelling of Activated Sludge, Wat. Sci. Tech. 23, Kyoto, pp.1057–1066, 1991.

    Google Scholar 

  81. Stensel H.D., R.C. Brenner, K.M. Lee, H. Melcer and K. Rakness, Biological Aerated Evaluation, ASCE, J. of Env. Eng., Vol. 3, No. 6, pp. 655–671, 1988.

    Article  Google Scholar 

  82. Smith A.J., P.J. Hardy, W.E. Edwards and C. Woods, Biocarbone Process Evaluation, Thames Water Annual Report, Project R61, 1989.

    Google Scholar 

  83. Taniguchi N. et al., Nitrogen Removal Using Multistage Air Lift, 60th WPCF Conf., Dallas, October, 1988.

    Google Scholar 

  84. Thompson D. et al., Step Feed Control to Minimise Solids Loss during Stors Flows, Res. JWPCF, Vol.61, No.1/2, pp.1658–1665, 1989.

    Google Scholar 

  85. Tschui M., Tertiary Nitrification in Aerated Biofilters, Europ. Filtration Congress, Ostende, April 1993.

    Google Scholar 

  86. Verhaegen K., K. Van Rompu and W. Verstraete, Pretreatment with Parallel Plate Separators, Tribune Eau, 42, 540, pp. 52–57, 1989.

    CAS  Google Scholar 

  87. Wacheux H. et al., Inventory and Assessment of Automatic Nitrate Analysers for Urban Sewage Works Instrumentation, Control & Automation, IAWPRC, Hamilton, Canada, June 17–25, 1993.

    Google Scholar 

  88. Wanner J. et al., Innovative Technology for Upgrading Nutrient Removal Activated Sludge, Wat. Sci. Tech., Vol.22, No.7/8, pp.9–20 ( IAWPRC Munich ), Sept. 1989.

    Google Scholar 

  89. Wheale G., S. Williamson and G. Cooper Smith, Biocarbone for Advanced Sewage Treatment, IWEM Specialised Seminar, London, November 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rogalla, F. (1996). High Performance Sewage Treatment for Reduced Infrastructure Costs. In: Misra, K.B. (eds) Clean Production. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79940-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79940-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79942-6

  • Online ISBN: 978-3-642-79940-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics