Skip to main content

Resource Scarcity as a Stimulus for Advantageous Innovations

  • Chapter
  • 248 Accesses

Abstract

Resource scarcity has become an increasingly conditioning factor in economic development and, consequently in the international relationships. In this paper it is indicated that, in order to greatly modify resource utilization, new criteria in designing and managing production processes should be introduced which consider the availability of primary commodities and energy sources, as well as the environmental quality. Such an innovation activity should be an opportunity for economic benefits either for individual companies or the whole society. Indeed, while obtaining materials, energy and environmental efficiencies, also improvements in global efficiency (notably productivity, product performance, flexibility) have to be obtained so that the required investments can be effective. Finally, some meaningful case studies — concerning environmental, mineral, agro-industrial, agro-food and energy resources — are here examined and discussed from both a technical and an economic standpoint.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballini V. and G. Barbiroli, Tendenze evolutive dell’industria del rame e dell’alluminio. L’industria, no. 1, pp. 57–63, 1976.

    Google Scholar 

  2. Barbiroli G., Le dinamiche della tecnologia. Bulzoni, Roma, 1991. (English version: The Dinarnics of Technology. Cambridge University Press, Cambridge, forthcoming).

    Google Scholar 

  3. Barbiroli G., Il fattore energia come volano di mutamento tecnologico, Franco Angeli, Milan, 1993.

    Google Scholar 

  4. Barbiroli G. and V. Ballini, Struttura e tendenze del mercato internazionale del nickel. Quaderni di Merceologia, vol. 12, no. 2, pp. 181–203, 1973.

    Google Scholar 

  5. Barbiroli G., M. Fiorini, P. Mazzaracchio and A. Raggi, Eco—compatible Technologies: Criteria for Their Assessment as Strategic Patterns, Proceedings of “Environmental Pollution —ICEP 2”, Sitges–Barcelona (Spain), September, pp. 489–496, 1993.

    Google Scholar 

  6. Battersby M.J.G., H. Kellerwessel and G. Oberheuser, Important Advances in the Development of High Pressure Rolls Comminution for the Minerals Industry. Proceedings of the International Conference on Extractive Metallurgy of Gold and Base Metals, Kalgoorlie, Australia, pp. 159–165, 1992.

    Google Scholar 

  7. Benerji N.K. and P.K. Dubey, Energy Conservation in Cement Plants. Electrical India, vol. 27, no. 1, pp. 5–11, January, 1987.

    Google Scholar 

  8. Billington R.S., The Cost Effectiveness of a Clean Technology Approach in the Metal Finishing Sector. Proocedings of Effluent Treatment and Waste Minimization Symposium, Leeds (UK), 31 March — 1 April, pp. 95–108, 1993.

    Google Scholar 

  9. Brown D.R. and G.E. Spanner, Impact Evaluation of an Energy Savings Plan Project at Holnam Incorporated. USDOE, Washington, DC, USA, Report no.: PNL-8483, 1993.

    Google Scholar 

  10. Buckwell A. and A. Mosey, Biotechnology and Agriculture. Food Policy, February, pp. 44–56, 1990.

    Google Scholar 

  11. Chapman P.F., The Energy Costs of Producing Copper and Aluminium from Primary Sources. Metals and Materials, vol. 8, no. 2, pp. 107–111, 1974.

    Google Scholar 

  12. Cole S., The Global Impact of Information Technology. World Development, vol. 14, no. 10–11, pp. 1277–1289,1986.

    Article  Google Scholar 

  13. Corley D.M. and R.E. Jenson, Reverse Flow Melters, Aluminium Industry Energy Conservation Workshop XI, Jacksonville, Florida, USA, November 1–2, pp. 437–449, 1990.

    Google Scholar 

  14. Desmidt F., Precalcination for Burning Line Conversion. World Cement, vol. 18, no. 10, pp. 404–413, 1987.

    CAS  Google Scholar 

  15. Dolcetti G., A. Grandi and G. Chiellino, Trattamento anaerobico con reattore UASB nell’industria cartaria. Industria Chimica e Petrolifera, vol. 21, no. 3, pp. 76–88, 1993.

    Google Scholar 

  16. Eketorp S., Energy Considerations of Classical and New Iron-and Steel-Making Technology. Energy, vol. 12, no. 10/11, pp. 1153–1168, 1987.

    Article  CAS  Google Scholar 

  17. Endres G. and J.C. Gauthier, Reduction of Emissions and Energy Consumption in Rotary Kilns by the Means of an Advance Combustion Technology. Ciments, Betons, Platres, vol. 800, pp. 43–48, 1993.

    CAS  Google Scholar 

  18. Enkegaard T., Recent Experiences With Vertical Mills and High Efficiency Separators in Cement Grinding Circuits. 28th IEEE Cement Industry Technical Conference, Salt Lake City, UT, USA, May 19–22, 1986.

    Google Scholar 

  19. Foraboschi F.P., Conseguenze del vincolo ambientale sullo sviluppo e la ristrutturazione delle attività produttive. Proceedings of the Conference “Lo sviluppo compatibile”, Forlì(Italy), 11–12 October, pp. 2–31, 1991.

    Google Scholar 

  20. Francis E.F., Cement Plant Design for Low Power Consumption. IEEE Cement Industry Technical Conference, Lancaster, May 10–14, 1981.

    Google Scholar 

  21. Franklin J., The Atmospheric Degradation and Impact of 1,1,1,2-Tetrafluoroethane (Hvdrofluorocarbon 134a). Chemosphere, vol. 27, no. 8, pp. 1565–1601, 1993.

    Article  CAS  Google Scholar 

  22. Greaves J.R., New Design Concepts for Energy Efficient Kilns and Furnaces in the Production of Whitewares. Ceramic Engineering and Science Proceedings, vol. 6, no. 11–12, pp. 1440–1444, 1985.

    Google Scholar 

  23. Greeley M. and S. Joffe, The New Plant Biotechnologies and Rural Poverty in the Third World, IDS, University of Sussex, Brighton, UK, p. 56, 1987.

    Google Scholar 

  24. Harriss R. J, Aluminium Treatment Technology into the ‘90s. Foundry Trade Journal, vol. 163, no. 3386, pp. 145–147, 1989.

    Google Scholar 

  25. Helmuth R.A., Improved Cement and Energy Savings with Particle Size Control. IEEE Cement Industry Technical Conference, Lancaster, May 10–14, 1981.

    Google Scholar 

  26. Hirschhorn J.S., The New Environmental Protection. Technology Exists to Prevent Polution. Pollution Engineering, vol. 19, no. 11, pp. 62–64, November, 1987.

    Google Scholar 

  27. Huising D., L. Siljebratt and M. Backman, Preventive Environmental Protection Strategy: Preliminary Results of an Experiment in Landskrona, Sweden. UNEP Industry and Environment, January/February/March, pp. 9–10, 1989.

    Google Scholar 

  28. Irani J.J., Continuous Casting: the State-of-the-Art. IE(I) Bulletin, vol. 38, August, 1988.

    Google Scholar 

  29. Kalter R.J. and L.W. Tauer, Potential Economic Impacts of Agricultural Biotechnology. American Journal of Agricultural Economics, vol. 69, pp. 420–425, 1987.

    Article  Google Scholar 

  30. Karis L.A., Upgrading Existing Preheater Systems for Energy Conservation and Increased Capacity. IEEE Cement Industry Technical Conference, San Francisco, May 26–28, 1987.

    Google Scholar 

  31. Kemp R., X. Olsthoom, F. Oosterhuis and H. Verbruggen, Supply and Demand Factors of Cleaner Technologies: Some Empirical Evidence. Environ Resour Econ., vol. 2, no. 6, pp. 615–634, 1992.

    Google Scholar 

  32. Ko M.K.W., N.D. Sze, G. Molnar and M.J. Prather, Global Warming from Chlorofluorocarbons and Their Alternatives: Time Scales of Chemistry and Climate. Atmos Environ, vol. 27A, no. 4, pp. 581–587, 1993.

    CAS  Google Scholar 

  33. Kroeze C. and L. Reijnders, Halocarbons and Global Warming, II. Sci. Total Environ., vol. 112, no. 2–3, pp. 269–290, 1992.

    Article  CAS  Google Scholar 

  34. Lebedev V.A., Ecology and Economics of Aluminium Electrometallurgy. Rasplavy, no. 1, pp. 64–68, Jan—Feb, 1993.

    Google Scholar 

  35. Levine S., Martin Marietta’s New Davenport Plant Cuts Energy Needs. Pit and Quarry, vol. 74, no. 13, pp. 94–100, 1982.

    Google Scholar 

  36. Mantegazzini M.C., The Environmental Risks from Biotechnology, Frances Pinter, London, UK, 1986.

    Google Scholar 

  37. Mohamed M.G. and S.G. Saad, Clean Technology Approaches in Metal Enamelling Industry. Water Pollution II: Modelling, Measuring & Prediction (CMP), p. 641–647, 1993.

    Google Scholar 

  38. Nixon J.C., Scientific and Technological Developments in Extractive Metallurgy. G. K. Williams Memorial Symposium, Melbourne, pp. 17–23, 1985.

    Google Scholar 

  39. Norrström H.A., Reducing the Discharges to Water—Technical Objectives. Water Science and Technology, vol. 20, no. 1, pp. 9–18, 1988.

    Google Scholar 

  40. Onuma E. and M. Ito, Recent Advance in Cement Grinding Technology. Seramikkusu (Japan), vol. 28, no. 5, pp. 482–486, 1993.

    Google Scholar 

  41. Orloff D.I., Impulse Drying of Paper: A Review of Recent Research. Fourteenth National Industrial Energy Technology Conference: Proceedings, Houston, TX, USA, 22–23 Apr 1992, pp. 110–116, 1992.

    Google Scholar 

  42. Pere J., M. Siikaaho and L. Viikari, Enzymes in Refiner Mechanical Pulping. Technical Research Centre of Finland, Espoo (Finland). Biotechnical Lab., Report No.: KCL-KUITU-30, 1993.

    Google Scholar 

  43. Phillips M.J., Microeconomic Impacts of Emerging Technologies. American Journal of Agriculture Economics, vol. 67, pp. 1164–1169, 1985.

    Article  Google Scholar 

  44. Reizian A., S. Rault, Y. Dat and M. Robba, A Mass Spectrometric Method for the Detection of Various Fluorocarbon Derivatives in Synthetic Flexible and Rigid Foams. Chemosphere, vol. 27, no. 9, pp. 1681–1690, 1993.

    Article  CAS  Google Scholar 

  45. Ridderbusch G.L., Glass Manufacturing. Status, Trends and Process Technology Development. Proceedings of the Conference “Energy and the Environment in the 21st Century”, Cambridge, Massachusetts, March 26–28, pp. 405–414, 1990.

    Google Scholar 

  46. Roberts F., Energy Consumption in the Production of Materials. Metals and Materials, vol. 8, no. 3, pp. 16 7–173, 1974.

    Google Scholar 

  47. Rose J., Antarctic Condominium: Building a New Legal Order for Commercial Interests. Marine Technology Society Journal, pp. 19–27, January, 1976.

    Google Scholar 

  48. Rückert M., Efficient Use of Heat Radiated During Cement Production. Siemens Power Eng Autom, vol. 8, no. 3, pp. 196–197, 1986.

    Google Scholar 

  49. Sakamoto S. and T. Kawata, Energy Conservation at Osaka Cement. Pit and Quarry, vol. 73, no. 1, pp. 114–117, 1980.

    Google Scholar 

  50. Saraswat N. and P. Khanna, Waste Minimization in Industry: Issues and Prospects. UNEP Industry and Environment, January/February/March, pp. 45–47, 1989.

    Google Scholar 

  51. Sehested J. and T.J. Wallington, Atmospheric Chemistry of Hydrofluorocarbon 134a. Fate of the Alkoxy Radical CF3O. Environ Sci Technol, vol. 27, no. 1, pp. 146–152, 1993.

    Article  CAS  Google Scholar 

  52. Seltmann M., Integrierte Warmeruckgewinnung an Aufheizstationen für Aluminiumtransportbehalter. Gas Wärme International, vol. 41, no. 7–8, pp. 313–317, 1992.

    CAS  Google Scholar 

  53. Stirling A.J., Electron Beams — A New Technology in the Forest Industry. Proceedings of the 32th Annual Conference of the Canadian Nuclear Association, Saint John (Canada), 7–10 Jun, 1992, pp. 241–245, 1992.

    Google Scholar 

  54. Sundholm J., KUITU—Energy-Efficient Mechanical Pulping. Finnish Pulp and Paper Research Inst., Espoo (Finland), Report No: KTM/E-B-166, 1993.

    Google Scholar 

  55. Taylor P.B., M. Gettings, N.G. Eyre and G.C. Bushell, Energy Efficiency in the Metals Industries. Metals and Materials, vol. 2, no. 8, pp. 494–500, August, 1986.

    CAS  Google Scholar 

  56. Titchell I, New Concept in Aluminium Recycling, Metals and Materials, p. 562, September, 1990.

    Google Scholar 

  57. Tweeten L. and M. Welsh, The Economics of Agricultural Biotechnology: Discussion. American Journal of Agricultural Economics, vol. 69, pp. 440–442, 1987.

    Article  Google Scholar 

  58. Wright J.K., I.F. Taylor and D.K. Philp, A Review of Progress of the Development of New Ironmaking Technologies. Minerals Engineering, vol. 4, no. 7–11, pp. 983–1001, 1991.

    Article  Google Scholar 

  59. Zurer P., CFC Substitutes Proven Safe for Ozone Layer. Chem Eng News, vol. 72, no. 2, pp. 5–6, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbiroli, G., Raggi, A., Fiorini, M. (1996). Resource Scarcity as a Stimulus for Advantageous Innovations. In: Misra, K.B. (eds) Clean Production. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79940-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79940-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79942-6

  • Online ISBN: 978-3-642-79940-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics