Feedback Stabilizability of Time-Periodic Parabolic Equations

  • Pablo Koch Medina
Part of the Dynamics Reported book series (DYNAMICS, volume 5)

Abstract

Differential equations (partial and ordinary) have traditionally occupied a prominent place within mathematics. One of the main reasons for this is the fact that they have served as models for the evolution of systems arising in physics, chemistry, biology and various other disciplines. However, the traditional topics in the theory of differential equations do not encompass many important problems which fall into the realm of what is today known as control theory. In this paper we describe the basis for a geometric theory of time-periodic abstract linear control systems of ‘parabolic’ type, concentrating on stabilization by feedback, and discuss some applications to second order time-periodic parabolic initial-boundary value problems on bounded domains. A theory of this kind has already been developed in the finite dimensional case (cf. [17], [16]) and in infinite dimensions when the system is autonomous (cf. [7], [40]). For the time-periodic infinite dimensional case some first steps have been made by A. Lunardi (cf. [33]). But before we embark on a description of our results we give an example as motivation for the kind of problems in control theory we shall be concerned with.

Keywords

Manifold Expense Peri Radon Kato 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Amann, Periodic solutions of semilinear parabolic equations, in Nonlinear Analysis. A Collection of Papers in Honor of Erich H. Rothe ( L. Cesari, R. Kannan, H.F. Weinberger, Eds.), Academic Press, New York, 1978, pp. 1–29.Google Scholar
  2. [2]
    H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983) 225–254.MathSciNetMATHGoogle Scholar
  3. [3]
    H. Amann, Existence and regularity for semilinear parabolic evolution equations, Annali Scuola Norm. Sup. Pisa Ser. IV, XI (1984) 593–676.Google Scholar
  4. [4]
    H. Amann, Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc. 293 (1986) 191–227.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Diff. Equ. 72 (1988) 201–269.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    H. Amann, Parabolic evolution equations in interpolation and extrapolation spaces, J. Funct. Analysis 78 (1988) 233–270.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    H. Amann, Feedback stabilization of linear and semilinear parabolic systems, in Proc. Trends in Semigroup Theory and Applications, Trieste 1987, Marcel Decker, New York, 1989, pp. 21–57.Google Scholar
  8. [8]
    H. Amann, Dynamic theory of quasilinear parabolic equations, II. Reaction-diffusion systems, Diff. and Int. Equ., 3 (1990) 13–75.MathSciNetMATHGoogle Scholar
  9. [9]
    H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis, W. de Gruyter, Berlin, 1990.MATHCrossRefGoogle Scholar
  10. [10]
    H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value pro-blems, to appear in Function Spaces, Differential Operators and Nonlinear Analysis (H.Triebel and H.J. Schmeisser, Eds.) Teubner, 1993.Google Scholar
  11. [11]
    H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, 1995.MATHCrossRefGoogle Scholar
  12. [12]
    J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.MATHCrossRefGoogle Scholar
  13. [13]
    A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Control, Birkhäuser, Basel, 1992.MATHGoogle Scholar
  14. [14]
    S. Bittanti, P. Colaneri and G. Guardabassi, H and K-controllability of linear periodic systems, SIAM J. Control & Optimization 22 (1984) 889–893.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    S.Bittanti and P. Bolzern, Stabilizability and detectability of linear periodic systems, Systems and Control Letters 6 (1985) 141–145.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    S. Bittanti, Deterministic and stochastic linear periodic systems, in Time Series and Linear Systems ( S. Bittanti, Ed.) Springer, LN Control and Information Sciences, Berlin, 1986.CrossRefGoogle Scholar
  17. [17]
    P. Brunovsky, Controllability and linear closed-loop controls in linear periodic systems, J. Diff. Eq. 6 (1969) 296–313.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    S.-N. Chow, K. Lu and J. Mallet-Paret, Floquet theory for parabolic differential equations I: the time periodic case, Center for Dynamical Systems and Nonlinear Studies, Report Nr.58, Georgia Institute of Technology, 1991.Google Scholar
  19. [19]
    Ph. Clément, H.J.A.M. Heijmans et al. One-Parameter Semigroups, North Holland, CWI Monograph 5, Amsterdam, 1987.Google Scholar
  20. [20]
    F. Colonius, Optimal Periodic Control, Springer, LNM 1313, Berlin, 1988.Google Scholar
  21. [21]
    D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Longman Scientific & Technical, Pitman Research Notes in Mathematics Series 279, Harlow, Essex, 1992.Google Scholar
  22. [22]
    G. Da Prato and A. Ichikawa, Quadratic control for linear periodic systems, Appl. Math. Optim. 18 (1988) 39–66.MATHCrossRefGoogle Scholar
  23. [23]
    G. Da Prato and A. Lunardi, Floquet exponents and stabilizability in time-periodic parabolic systems, Appl. Math. Optim. 22 (1990) 91–113.MATHCrossRefGoogle Scholar
  24. [24]
    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, LNM 840, Berlin, 1981.Google Scholar
  25. [25]
    P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Research Notes in Mathematics 247, Harlow, Essex, 1991Google Scholar
  26. [26]
    G.A. Hewer, Periodicity, detectability and the matrix Riccati equation, SIAM J. Control & Optimization 13 (1975) 1235–1251.Google Scholar
  27. [27]
    G. Iooss, Bifurcation of Maps and Applications, North Holland, Amsterdam, 1979.Google Scholar
  28. [28]
    T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.MATHGoogle Scholar
  29. [29]
    H.W. Knobloch and F. Kappel, Gewöhnliche Differentialgleichungen, Teubner, Stuttgart, 1974.MATHGoogle Scholar
  30. [30]
    H.W. Knobloch and H. Kwakernaak, Lineare Kontrolltheorie, Springer, Berlin, 1985.MATHCrossRefGoogle Scholar
  31. [31]
    O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, Rhode Island, 1968.Google Scholar
  32. [32]
    A. Lunardi, Bounded solutions of linear periodic abstract parabolic equations, Proc. Royal Soc. Edinburgh 110A (1988) 135–159.Google Scholar
  33. [33]
    A. Lunardi, Stabilizability of time periodic parabolic equations, SIAM J. Control & Optimization 29 (1991) 810–828.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.MATHCrossRefGoogle Scholar
  35. [35]
    P.E. Sobolevskii, Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. 49 (1966) 1–62.Google Scholar
  36. [36]
    A. Stokes, A Floquet theory for functional differential equations, Proc. Nat. Acad. Sei., 48 (1962) 1330–1334.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    H. Tanabe, On the equation of evolution in a Banach space, Osaka Math. J. 12 (1960) 363–376.Google Scholar
  38. [38]
    H. Tanabe, Evolution Equations, Pitman, London, 1979.MATHGoogle Scholar
  39. [39]
    H. Triebel, Interpolation Theory, Function Spaces and Differential Operators, North Holland, Amsterdam, 1978.Google Scholar
  40. [40]
    T. Susuki and M. Yamamoto, Observability, controllability and feedback stabilizability for evolution equations I–III Japan J. Appl. Math. 2 (1985) 211–228, 309–327; 4 (1987) 185–203.Google Scholar
  41. [41]
    K. Yosida, Functional Analysis, Springer, Berlin, 1965.MATHGoogle Scholar
  42. [42]
    E. Zeidler, Nonlinear Functional Analysis and its Applications I, Fixed-Point Theorems, Springer, New York, 1985.Google Scholar

Copyright information

© Springer-Verlar Berlin Heidelberg 1996

Authors and Affiliations

  • Pablo Koch Medina
    • 1
  1. 1.Mathematisches InstitutUniversität ZürichSwitzerland

Personalised recommendations