Advertisement

Frontal Lobe and the Cognitive Foundation of Behavioral Action

  • J. M. Fuster
Part of the Research and Perspectives in Neurosciences book series (NEUROSCIENCE)

Summary

Motor representations are hierarchically organized in dorsolateral frontal cortex. The highest, most global plans and schemes of action appear to be represented in prefrontal cortex, intermediate ones in premotor cortex, and the most elementary motor acts in primary motor cortex. The confluence of external and internal inputs on frontal cortex leads to the activation of frontal neuron networks representing different categories of action. The activation of these networks is the physiological substrate for the initiation and execution of behavioral action.

Sequences of deliberate action require the coordinated interplay of all stages of the frontal hierarchy. Two cognitive functions for temporal integration operate at every stage: active short-term memory and preparatory set. Both are most apparent and can best be studied in the prefrontal cortex, where the longest action sequences are represented and coordinated and where cross-temporal contingencies are mediated. The prefrontal cortex, in cooperation with subcortical and posterior cortical areas, ensures the retention of sensory information for prospective action and the preparatory set of motor systems for its execution. Both of these functions of the prefrontal cortex have been substantiated by neuropsychology, reversible lesion and microelectrode recording in the monkey, and neuroimaging in the human.

Keywords

Prefrontal Cortex Frontal Cortex Motor Cortex Frontal Lobe Behavioral Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert ML, Goodglass H, Helm NA, Rubens AB, Alexander MP (1981) Clinical aspects of dysphasia. New York, SpringerGoogle Scholar
  2. Alexander GE, Crutcher MD (1990a) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271PubMedCrossRefGoogle Scholar
  3. Alexander GE, Crutcher MD (1990b) Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 64:133–150PubMedGoogle Scholar
  4. Barbizet J (1970) Human Memory and its pathology. San Francisco, FreemanGoogle Scholar
  5. Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90:293–302PubMedCrossRefGoogle Scholar
  6. Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medizinische Wissenschaften 12:578–580,Google Scholar
  7. Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medizinische Wissenschaften 12: 595–559Google Scholar
  8. Brown JW (1987) The microstructure of action. In: Perecman E (ed) The frontal lobes revisited. New York, IRBN Press, pp 250–272Google Scholar
  9. Brunia CHM, Haagh SAVM, Scheirs JGM (1985) Waiting to respond: Electrophysiological measurements in man during preparation for a voluntary movement. In: Heuer H, Kleinbeck U, Schmidt K-H (eds) Motor behavior. New York, SpringerGoogle Scholar
  10. Di Pellegrino G, Wise SP (1991) A neurophysiological comparison of three distinct regions of the primate frontal lobe. Brain 114:951–978PubMedCrossRefGoogle Scholar
  11. Flechsig P (1901) Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet 2:1027–1029CrossRefGoogle Scholar
  12. Freedman M, Oscar-Berman M (1986) Bilateral frontal lobe disease and selective delayed response deficits in humans. Behav Neurosci 100:337–342PubMedCrossRefGoogle Scholar
  13. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349PubMedGoogle Scholar
  14. Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. J Neurophysiol 36:61–78PubMedGoogle Scholar
  15. Fuster JM (1989) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. New York, RavenGoogle Scholar
  16. Fuster JM (1994) Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MIT PressGoogle Scholar
  17. Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654PubMedCrossRefGoogle Scholar
  18. Fuster JM, Bauer RH, Jervey JP (1982) Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol 77:679–694PubMedCrossRefGoogle Scholar
  19. Fuster JM, Bauer RH, Jervey JP (1985) Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res 330:299–307PubMedCrossRefGoogle Scholar
  20. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419PubMedCrossRefGoogle Scholar
  21. Goldberg G, Mayer NH, Toglia JU (1981) Medial frontal cortex infarction and the alien hand sign. Arch Neurol 38:683–686PubMedGoogle Scholar
  22. Hécaen H, Albert ML (1978) Human neuropsychology. New York, John Wiley & SonsGoogle Scholar
  23. Ingvar DH (1985) “Memory of the future:” An essay on the temporal organization of conscious awareness. Human Neurobiol 4:127–136Google Scholar
  24. Jackson JH (1915) On affections of speech from disease of the brain. Brain 38:107–174CrossRefGoogle Scholar
  25. Jacobsen CF (1935) Functions of the frontal association area in primates. Arch Neurol Psychiatry 33:558–569Google Scholar
  26. Jonides J, Smith EE, Doeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625PubMedCrossRefGoogle Scholar
  27. Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferent Potentiale. Pfluegers Arch Gesamte Physiol 284:1–17CrossRefGoogle Scholar
  28. Lashley KS (1951) The problem of serial order in behavior. In: Jeffress LA (ed) Cerebral mechanisms in behavior. New York, John Wiley & Sons, pp 112–146Google Scholar
  29. Lewinsohn PM, Zieler RE, Libet J, Eyeberg S, Nielson G (1972) Short-term memory: A comparison between frontal and nonfrontal right- and left-hemisphere brain damaged patients. J Comp Physiol Psychol 81:248–255PubMedCrossRefGoogle Scholar
  30. Lhermitte F, Deroulsne J, Signoret JL (1972) Analyse neuropsychologique du syndrome frontal. Rev Neurol 127:415–440PubMedGoogle Scholar
  31. Libet B (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sei 8:529–566CrossRefGoogle Scholar
  32. Luria AR (1966) Higher cortical functions in man. New York, Basic BooksGoogle Scholar
  33. Luria AR (1970) Traumatic aphasia. The Hague, MoutonGoogle Scholar
  34. Milner B, Petrides M, Smith ML (1985) Frontal lobes and the temporal organization of memory. Human Neurobiol 4:137–142Google Scholar
  35. Niki H (1974) Differential activity of prefrontal units during right and left delayed response trials. Brain Res 70:346–349PubMedCrossRefGoogle Scholar
  36. Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Association and auditory cortices. New York, Plenum, pp 3–61Google Scholar
  37. Quintana J, Fuster JM (1992) Mnemonic and predictive functions of cortical neurons in a memory task. NeuroReport 3:721–724PubMedCrossRefGoogle Scholar
  38. Shindy WW, Posley KA, Fuster JM (1994) Reversibel deficit in haptic delay tasks from cooling prefrontal cortex. Cerebral Cortex 4:443–450PubMedCrossRefGoogle Scholar
  39. Sierra-Paredes G, Fuster JM (1993) Auditory-visual association task impaired by cooling prefrontal cortex. Soc Neurosci Abstracts 19:801 (Abstract)Google Scholar
  40. Stuss DT, Benson DF (1986) The frontal lobes. New York, Raven PressGoogle Scholar
  41. Swartz BE, Halgren E, Fuster JM, Simplins F, Gee M, Mandelkern M (1995) Cortical metabolic activation in humans during a visual memory task. Cerebral Cortex, in pressGoogle Scholar
  42. Tanji J, Evarts EV (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol 39:1060–1068Google Scholar
  43. Thompson RF (1986) The neurobiology of learning and memory. Science 233:941–947PubMedCrossRefGoogle Scholar
  44. Walter WG, Cooper R, Aldrige VJ, McCallum WC, Winter AL (1964) Contingent negative variation: An electric sign of sensori-motor association and expectancy in the the human brain. Nature 203:380-384PubMedCrossRefGoogle Scholar
  45. Weizsäcker Won (1950) Der Gestaltkreis. Stuttgart, ThiemeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. M. Fuster
    • 1
  1. 1.Department of Psychiatry and Brain Research Institute, School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations