Skip to main content

Can Molecular Techniques Change Our Ideas About the Species Concept?

  • Conference paper
Molecular Ecology of Aquatic Microbes

Part of the book series: NATO ASI Series ((ASIG,volume 38))

Abstract

Molecular techniques can now be used to address many important questions concerning taxonomic affinity, genetic diversity, gene flow and dispersal. These data (protein or nucleic acid sequence information) can augment our understanding of a species in the marine environment. There is growing evidence that speciation and dispersal mechanisms in the marine environment are very different from terrestrial systems and occur at different rates. We have examined species/genetic diversity in three ecologically important members of the marine phytoplankton: the prymnesiophytes Phaeocystis and Emiliania huxleyi and the diatom Skeletonema costatum. All are high dispersal taxa. Differences among Phaeocystis species as measured by 18S rDNA sequence comparison indicate that extant Phaeocystis species probably arose from a cosmopolitan warm-water ancestor. Speciation events in this genus appear to have responded to major global cooling events. Two species complexes are apparent: one corresponds to taxa from polar regions and the other to taxa from temperate to tropical regions. Emiliania huxleyi, a much younger species, has dispersed across many océanographie barriers during much colder climatic conditions. Sequence data from coding and non-coding regions confirm that it is a single taxon, but RAPD techniques reveal extensive genetic diversity with both spatial and short-term temporal resolution. Sequence comparison of isolates of Skeletonema costatum, a cosmopolitan neritic form, reveals at least one cryptic species, which can also be differentiated by certain morphological features, and a cluster of isolates that may be sibling species. It may be that in many planktonic forms molecular speciation has proceeded, whereas morphological divergence has not. The abundance of sibling species in the marine environment is only now being revealed (Knowlton 1993). The fitness of form resulting in similar if not identical morphotypes has analogies at all taxonomic levels in the sea (Knowlton 1993, Sournia 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Lin C, Key R, Montgomery L, Stahl DA (1992) Diversity among Fibrobacter isolates: Towards a phylogenetic classification. System Appl Microbiol 15: 23–31

    Google Scholar 

  • Aiken J, Moore GF, Holligan PM (1992) Remote sensing of oceanic biology in relation to global climate change. J Phycol 28: 579–590

    Article  Google Scholar 

  • Baumann MEM and Jahnke J (1986) Marine Planktonalgen der Arktis. I. Die Haptophycee Phaeocysiisjpouchetii. Mikro 75: 262–5

    Google Scholar 

  • Baumann MEM, Brandini FP, Staubes R (1994a) The influence of light and temperature on carbon specific DMS-release by cultures of Phaeocystis antarctica and three antarctic diatoms. Mar Chem 45: 129–136

    Article  CAS  Google Scholar 

  • Baumann MEM, Lancelot C, Brandini FP, Sakshaug E, John DM (1994b) The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach. J Mar Sys 5: 23–39

    Article  Google Scholar 

  • Beam CA, Preparata R-M, Himes M, Nanney DL (1993) Ribosomal RNA sequencing of members of the Crypthecodinium cohnii (Dinophyceae) species complex: comparison with soluble enzyme studies. J Euk Microbio 40: 660–667

    Article  CAS  Google Scholar 

  • Bhattacharya D, Medlin L, Wainwright PO, Arizitia EV, Bibeau C, Stickel SK, Sogin ML (1992) Algae containing chlorophylls a + c are paraphyletic: molecular evolutionary analysis of the Chromophyta. Evol 46: 1801–1817

    Article  CAS  Google Scholar 

  • Bird CJ, Ragan MA, Critchley AT, Rice EL, Gutell RR (1994) Molecular relationships in the Gracilariaceae (Rhodophyta): further observations on some undetermined species. Eur J Phycol 29: 195–202

    Article  Google Scholar 

  • Brand LE (1982) Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnol Oceanogr 27: 236–245

    Article  Google Scholar 

  • Campbell L, Shapiro LP, Haugen EM, Morris L (1989) Immunochemical approaches to the identification of the ultraplankton: assets and limitations. In Novel Phytoplankton Blooms EM Cosper, VM Bricelj, EJ Carpenter (eds) Springer-Verlag, Berlin 39–56

    Google Scholar 

  • Conte MH, Volkman JK, Eglinton G (1994) Lipid biomarkers of the Prymnesiophyceae. In The Haptophyte Algae JC Green and BSC Leadbeater (eds) Clarendon Press, Oxford 351–378

    Google Scholar 

  • Cracraft J (1989) Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and process of differentiation. In Speciation and Its Consequences D Orte and JA Endler (eds) Sinauer Assoc, Sunderland 28–59

    Google Scholar 

  • Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological time. Tree 3: 162–166

    Google Scholar 

  • Davidson AT and Marchant H (1992) The biology and ecology of Phaeocystis (Prymnesiophyceae). In Progress in Phycological Research Vol 8 (FE Round and DJ Chapman eds) Biopress, Bristol 1–45

    Google Scholar 

  • Freshwater DW and Rueness J (1994) Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33: 187–194

    Article  Google Scholar 

  • Friedl T and Zeltner C (1994) Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18S ribosomal RNA gene sequence comparisons. J Phycol 30: 500–506

    Article  CAS  Google Scholar 

  • Gallagher JC (1980) Population genetics of Skeletonema costatum (Bacillariophyceae) in Narragansett Bay. J Phycol 16: 464–474

    Article  Google Scholar 

  • Gallagher JC (1990a) The relative roles of space and time in controlling genetic differentiation in populations of the marine diatom Skeletonema costatum: preliminary data and a comparison of methods of analysis. J Phycol 26 (suppl): 17

    Google Scholar 

  • Gallagher JC (1990b) Comparisons of sampling methods and data analysis of molecular evolutionary studies of diatoms. Abstract 11th International Symposium on Living and Fossil Diatoms, San Francisco

    Google Scholar 

  • Goff LJ, Moon DA, Coleman AW (1994) Molecular delineation of species and species relationships in the red algal agarophytes Gracilariopsis and Gracilaria (Gracilariales). J Phycol 30: 521–537

    Article  CAS  Google Scholar 

  • Gosling EM (1994) Speciation and species concepts in the marine environment. In Genetics and Evolution of Aquatic Organisms (AR Beaumont ed) Chapman and Hall, London 1–15

    Google Scholar 

  • Hasle GR (1973) Morphology and taxonomy of Skeletonema costatum (Bacillariphyceae). Norw J Botl 20: 109–137

    Google Scholar 

  • Hedgecock D (1994) Population genetics of marine organisms. US GLOBEC News 6: 1–3, 11

    Google Scholar 

  • Huss VAR, Huss G, Kessler E (1989) Deoxyribonucleic acid reassociation and interspecies relationships of the genus Chlorella (Chlorophyceae). PI Syst Evol 168: 1–82

    Article  Google Scholar 

  • Huss VAR, Dörr R, Grossman U, Kessler E (1986) Deoxyribonucleic acid reassociation in the taxonomy of the genus Chlorella, Arch Microbiol 145:329–333

    Article  CAS  Google Scholar 

  • Huss VAR and Sogin ML (1991) Phylogenetic position of some Chlorella species within the Chlorococcales based upon complete small-subunit ribosomal RNA sequences. J Mol Evol 31:432–442

    Article  Google Scholar 

  • Jahnke J (1989) The light and temperature dependence of growth rate and elemental composition of Phaeocystis jglobosa Scherffel and P. pouchetii (Har.) Lagerh. in batch cultures. Neth J Sea Res 23: 15–21

    Article  Google Scholar 

  • Jahnke J and Baumann MEM (1986) Die marine planktonalge Phaeocystis globosa: eine Massenform unserer Küstengewässer. Mikro 75: 357–359

    Google Scholar 

  • Jahnke J, Baumann M (1987) Differentiation between Phaeocystis pouchetii (Har.) Lagerheim and Phaeocystis globosa Scherffel. I. Colony shapes and temperature tolerances. Hydro Bull 21: 141–147

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol Sys 24: 189–216

    Article  Google Scholar 

  • Karsten G (1905) Das Phytoplankton des Antarktischen Meeres nach dem Material der Deutschen Tiefsee-Expedition 1898–1899. Wiss Erg Deut Tiefsee-Exp ‘Valdivia’ 1898–1899. Band II Teil 2 1–136

    Google Scholar 

  • Kooistra WHCF (1993) Historical biogeography in tropical Atlantic populations of Cladophoropsis membranAcea and related species. Ph D Dissertation. University of Groningen, pp 111

    Google Scholar 

  • Kornmann P (1955) Beobachtungen an Phaeocystis-Kultartn. Hei Wiss Meeres 5: 218–233

    Article  Google Scholar 

  • Lagerheim G 1893) Phaeocystis nov. gen. grundadt På Tetraspora pouched Har. Bot Not 1: 32–33

    Google Scholar 

  • Lancelot C, Billen G, Sournia A, Weisse T, Colijn F, Veldhuis MJW, Davies A, Wassmann P (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio 16: 38–46

    Google Scholar 

  • Lancelot C, Billen G, Barth H (1991) The dynamics of Phaeocystis blooms in nutrients enriched coastal zones. Wat Poll Res Rep 23: 1–106

    Google Scholar 

  • Larsen J and Moestrup Ø (1989) Guide to Toxic and Potentially Toxic Marine Algae. Fish Inspection Service, Minister of Fisheries, Copenhagen, 49–51

    Google Scholar 

  • Manhart JR and McCourt RM (1992) Molecular data and species concepts in the algae. J Phycol 28: 730–737

    Article  Google Scholar 

  • Medlin LK, Elwood HJ, Stickel S, Sogin ML (1991) Morphological and genetic variation within the diatom Skeletonema castatum (Bacillariophyta): evidence for a new species Skeletonemapseudocostatum. J Phycol 27: 514–524

    Article  CAS  Google Scholar 

  • Medlin LK, Lange M, Baumann MEM (1994a) Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33: 199–212

    Article  Google Scholar 

  • Medlin LK, Barker GLA, Baumann, MEM, Hayes PK, Lange M (1994b) Molecular biology and systematics. In The Haptophyte Algae (JC Green and BSC Leadbeater eds), Clarendon Press, Oxford 393–412

    Google Scholar 

  • Moestrup Ø (1979) Identification by electron microscopy of marine nanoplankton from New Zealand including the description of four new species. N Zea J Bot 17: 61–95

    Google Scholar 

  • Moestrup Ø and Larsen J (1992) Potenially toxic Phytoplankton. 1 Haptophyceae (Prymnesiophyceae). In ICES Identification Leaflets for Plankton, Leaflet No 179 (JS Lindley ed),. Natural Environmental Research Council, Plymouth 1–11

    Google Scholar 

  • Nanney DL, Meyer EB, Simon EM, Preparata R-M (1989) Comparison of ribosomal and isozymic phylogenies of Tetrahymenine ciliates. J Prot 36: 1–8

    CAS  Google Scholar 

  • Ochman H and Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26: 74–86

    Article  PubMed  CAS  Google Scholar 

  • Olsen JL, Stam WT, Berger S, Menzel D (1994) 18S rDNA and evolution in the Dasycladales (Chlorophyta): modern living fossils. J Phycol in press

    Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Tree 7: 114–118

    PubMed  CAS  Google Scholar 

  • Pouchet G (1892) Sur une algue pélagique nouvelle. Compte Rendues séance à 16 Janvier

    Google Scholar 

  • Preparata R-M, Beam CA, Hirnes M, Nanney DL, Meyer EB, Simon EM (1992) Crypthecodinium and Tetrahymena: an exercise in comparative evolution. J Mol Evol 32:209–218

    Article  Google Scholar 

  • Scherffel A (1900) Phaeocystis globosa nov. spec, nebst einiger Betrachtungen über die Phylogenie niederer ins besonderer brauner Organismen. Wiss Meeres Ab Hel 4: 1–29

    Google Scholar 

  • Sogin ML, Ingold A, Karlok M, Nielsen H, Engberg J (1986) Phylogenetic evidence for the acquisition of ribosomal RNA introns subsequent to the divergence of some of the major Tetrahymena groups. EMBO 5: 3625–3630

    CAS  Google Scholar 

  • Sournia A (1988) Phaeocystis (Prymnesiophyceae): how many species? Nova Hedw 47:211–217

    Google Scholar 

  • Stiller JW and Waaland JR (1993) Molecular analysis reveals cryptic diversity in Porphyra (Rhodophyta). J Phycol 29: 506–517

    Article  CAS  Google Scholar 

  • van Bleijswijk J, van der Wal P, Kempers R, Veldhuis M, Young JR, Muyzer G, de Vrindde Jong E, Westbroek P (1991) Distribution of two types of Emiliania huxleyi Prymnesiophyceae in the northeast Atlantic region as determined by immunofluorescence and coccolith morphology. J Phycol 27: 566–570

    Article  Google Scholar 

  • Vaulot D, Birrien J-L, Marie D, Casorti R, Veldhuis M, Kraay G, Chrétiennot-Dinet M-J (1994) Morphology, ploidy, pigment composition and genome size of cultured strains of Phaeocystis (Prymnesiophyceae). J Phycol in press

    Google Scholar 

  • Wood AM and Leatham T (1992) The species concept in phytoplankton ecology. J Phycol 28: 723–729

    Article  Google Scholar 

  • Young JR and Westbroek P (1991) Phenotypic variation in the coccolithophorid species Emiliania huxleyi. Mar Micropaleont 18:5–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medlin, L.K., Lange, M., Barker, G.L.A., Hayes, P.K. (1995). Can Molecular Techniques Change Our Ideas About the Species Concept?. In: Joint, I. (eds) Molecular Ecology of Aquatic Microbes. NATO ASI Series, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79923-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79923-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79925-9

  • Online ISBN: 978-3-642-79923-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics